Dynamic Dispatching for Large-Scale Heterogeneous Fleet via Multi-agent Deep Reinforcement Learning

强化学习 计算机科学 启发式 自动化 比例(比率) 分布式计算 人工智能 深度学习 卡车 工业工程 工程类 物理 操作系统 航空航天工程 机械工程 量子力学
作者
Chi Zhang,Philip Odonkor,Shuai Zheng,Hamed Khorasgani,Susumu Serita,Chetan Gupta,Haiyan Wang
标识
DOI:10.1109/bigdata50022.2020.9378191
摘要

Dynamic dispatching is one of the core problems for operation optimization in traditional industries such as mining, as it is about how to smartly allocate the right resources to the right place at the right time. Conventionally, the industry relies on heuristics or even human intuitions which are often short-sighted and sub-optimal solutions. Leveraging the power of AI and Internet of Things (IoT), data-driven automation is reshaping this area. However, facing its own challenges such as large-scale and heterogenous trucks running in a highly dynamic environment, it can barely adopt methods developed in other domains (e.g., ride-sharing). In this paper, we propose a novel Deep Reinforcement Learning approach to solve the dynamic dispatching problem in mining. We first develop an event-based mining simulator with parameters calibrated in real mines. Then we propose an experience-sharing Deep Q Network with a novel abstract state/action representation to learn memories from heterogeneous agents altogether and realizes learning in a centralized way. We demonstrate that the proposed methods significantly outperform the most widely adopted approaches in the industry by 5.56% in terms of productivity. The proposed approach has great potential in a broader range of industries (e.g., manufacturing, logistics) which have a large-scale of heterogenous equipment working in a highly dynamic environment, as a general framework for dynamic resource allocation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性诗蕊完成签到,获得积分10
刚刚
1秒前
xinjing发布了新的文献求助10
1秒前
1秒前
Owen应助因为乌鸦像写字台采纳,获得10
2秒前
Ava应助wang采纳,获得10
2秒前
bkagyin应助OU采纳,获得30
2秒前
充电宝应助复杂惜霜采纳,获得10
2秒前
3秒前
3秒前
4秒前
Hhhhh发布了新的文献求助10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
Cominy发布了新的文献求助10
6秒前
安好好好发布了新的文献求助10
7秒前
不吃鸡蛋完成签到,获得积分20
8秒前
9秒前
个性诗蕊发布了新的文献求助10
10秒前
臭嘴橘子发布了新的文献求助10
10秒前
10秒前
10秒前
Hhhhh完成签到,获得积分10
10秒前
hu发布了新的文献求助10
11秒前
11秒前
12秒前
ffff发布了新的文献求助10
12秒前
研友_VZG7GZ应助醒醒采纳,获得10
13秒前
13秒前
13秒前
Lee完成签到,获得积分10
13秒前
核桃应助T拐拐采纳,获得20
13秒前
Lina完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
萍萍发布了新的文献求助10
16秒前
活力的焱发布了新的文献求助30
16秒前
hehsk发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416714
求助须知:如何正确求助?哪些是违规求助? 4532843
关于积分的说明 14136806
捐赠科研通 4448810
什么是DOI,文献DOI怎么找? 2440430
邀请新用户注册赠送积分活动 1432238
关于科研通互助平台的介绍 1409793