Network diffusion for scalable embedding of massive single-cell ATAC-seq data

嵌入 聚类分析 比例(比率) 缩放比例 异构网络
作者
Kangning Dong,Shihua Zhang
出处
期刊:Chinese Science Bulletin 卷期号:66 (22): 2271-2276 被引量:2
标识
DOI:10.1016/j.scib.2021.05.014
摘要

ABSTRACT With the rapid development of single-cell ATAC-seq technology, it has become possible to profile the chromatin accessibility of massive individual cells. However, it remains challenging to characterize their regulatory heterogeneity due to the high-dimensional, sparse and near-binary nature of data. Most existing data representation methods were designed based on correlation, which may be ill-defined for sparse data. Moreover, these methods do not well address the issue of excessive zeros. Thus, a simple, fast and scalable approach is needed to analyze single-cell ATAC-seq data with massive cells, address the “missingness” and accurately categorize cell types. To this end, we developed a network diffusion method for scalable embedding of massive single-cell ATAC-seq data (named as scAND). Specifically, we considered the near-binary single-cell ATAC-seq data as a bipartite network that reflects the accessible relationship between cells and accessible regions, and further adopted a simple and scalable network diffusion method to embed it. scAND can take information from similar cells to alleviate the sparsity and improve cell type identification. Extensive tests and comparison with existing methods using synthetic and real data as benchmarks demonstrated its distinct superiorities in terms of clustering accuracy, robustness, scalability and data integration. Availability The Python-based scAND tool is freely available at http://page.amss.ac.cn/shihua.zhang/software.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助111采纳,获得10
1秒前
乐乐应助单纯清采纳,获得10
1秒前
冰火完成签到,获得积分10
5秒前
6秒前
yangting发布了新的文献求助10
6秒前
科研通AI5应助受伤南霜采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得30
7秒前
han应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
柯罗诺斯J关注了科研通微信公众号
7秒前
烟花应助科研通管家采纳,获得10
7秒前
8秒前
liang发布了新的文献求助10
10秒前
ss完成签到,获得积分20
10秒前
Orange应助小Q采纳,获得10
10秒前
萨特完成签到,获得积分10
10秒前
所所应助茉莉采纳,获得10
12秒前
梦梦的小可爱完成签到 ,获得积分10
12秒前
14秒前
17秒前
18秒前
19秒前
香蕉觅云应助Yy采纳,获得30
19秒前
ww完成签到,获得积分10
19秒前
我是你宇哥21完成签到,获得积分10
20秒前
付传奎发布了新的文献求助10
20秒前
雨侯发布了新的文献求助10
21秒前
小明完成签到,获得积分10
21秒前
21秒前
小叮当完成签到,获得积分10
22秒前
Zr完成签到,获得积分10
22秒前
内向绿竹应助坚定小松鼠采纳,获得10
23秒前
柚子完成签到 ,获得积分10
23秒前
受伤南霜发布了新的文献求助10
24秒前
小白发布了新的文献求助10
24秒前
24秒前
柯罗诺斯J发布了新的文献求助10
25秒前
25秒前
两脚书橱的逃亡完成签到,获得积分10
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789633
求助须知:如何正确求助?哪些是违规求助? 3334559
关于积分的说明 10270626
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761