The Toronto Postliver Transplantation Hepatocellular Carcinoma Recurrence Calculator: A Machine Learning Approach

医学 计算器 肝细胞癌 肝移植 内科学 肿瘤科 移植 外科 计算机科学 操作系统
作者
Tommy Ivanics,Walter Nelson,Madhukar S. Patel,Marco P. A. W. Claasen,Lawrence Lau,Andre Gorgen,Phillipe Abreu,Anna Goldenberg,Lauren Erdman,Gonzalo Sapisochín
出处
期刊:Liver Transplantation [Lippincott Williams & Wilkins]
卷期号:28 (4): 593-602 被引量:40
标识
DOI:10.1002/lt.26332
摘要

Liver transplantation (LT) listing criteria for hepatocellular carcinoma (HCC) remain controversial. To optimize the utility of limited donor organs, this study aims to leverage machine learning to develop an accurate posttransplantation HCC recurrence prediction calculator. Patients with HCC listed for LT from 2000 to 2016 were identified, with 739 patients who underwent LT used for modeling. Data included serial imaging, alpha-fetoprotein (AFP), locoregional therapies, treatment response, and posttransplantation outcomes. We compared the CoxNet (regularized Cox regression), survival random forest, survival support vector machine, and DeepSurv machine learning algorithms via the mean cross-validated concordance index. We validated the selected CoxNet model by comparing it with other currently available recurrence risk algorithms on a held-out test set (AFP, Model of Recurrence After Liver Transplant [MORAL], and Hazard Associated with liver Transplantation for Hepatocellular Carcinoma [HALT-HCC score]). The developed CoxNet-based recurrence prediction model showed a satisfying overall concordance score of 0.75 (95% confidence interval [CI], 0.64-0.84). In comparison, the recalibrated risk algorithms' concordance scores were as follows: AFP score 0.64 (outperformed by the CoxNet model, 1-sided 95% CI, >0.01; P = 0.04) and MORAL score 0.64 (outperformed by the CoxNet model 1-sided 95% CI, >0.02; P = 0.03). The recalibrated HALT-HCC score performed well with a concordance of 0.72 (95% CI, 0.63-0.81) and was not significantly outperformed (1-sided 95% CI, ≥0.05; P = 0.29). Developing a comprehensive posttransplantation HCC recurrence risk calculator using machine learning is feasible and can yield higher accuracy than other available risk scores. Further research is needed to confirm the utility of machine learning in this setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助乐观的镜子采纳,获得10
1秒前
Lucas应助IDHNAPHO采纳,获得10
1秒前
1秒前
2秒前
YOLO完成签到,获得积分10
4秒前
奋斗的鞅发布了新的文献求助10
4秒前
HS完成签到,获得积分10
4秒前
123发布了新的文献求助10
4秒前
小蘑菇应助机灵雨采纳,获得10
5秒前
yalin完成签到,获得积分10
6秒前
DENG发布了新的文献求助10
7秒前
8秒前
javaxixi发布了新的文献求助10
9秒前
10秒前
13秒前
13秒前
感动归尘完成签到,获得积分10
13秒前
Aaron发布了新的文献求助10
14秒前
奋斗的蜗牛应助激流勇进采纳,获得10
14秒前
11发布了新的文献求助10
16秒前
张泽崇发布了新的文献求助10
19秒前
CodeCraft应助xixihaha采纳,获得10
20秒前
华仔应助Ab采纳,获得10
21秒前
22秒前
香蕉觅云应助XMUh采纳,获得20
25秒前
javaxixi完成签到,获得积分20
26秒前
26秒前
机灵雨发布了新的文献求助10
27秒前
30秒前
烟花应助Aaron采纳,获得10
31秒前
32秒前
32秒前
英俊的铭应助水灯霖采纳,获得10
35秒前
王婧萱萱萱完成签到 ,获得积分10
35秒前
孙策完成签到,获得积分10
37秒前
37秒前
丘比特应助英勇的寒蕾采纳,获得10
38秒前
38秒前
醒了没醒醒完成签到,获得积分10
39秒前
hhh完成签到,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782142
求助须知:如何正确求助?哪些是违规求助? 3327581
关于积分的说明 10232377
捐赠科研通 3042529
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758842