Time Series in Sensor Data Using State-of-the-Art Deep Learning Approaches: A Systematic Literature Review

系列(地层学) 国家(计算机科学) 计算机科学 最先进的 人工智能 数据科学 算法 地质学 古生物学
作者
Luis-Roberto Jácome-Galarza,Miguel Realpe,Jonathan S. Paillacho Corredores,José Leonardo Benavides Maldonado
出处
期刊:Smart innovation, systems and technologies 卷期号:: 503-514 被引量:2
标识
DOI:10.1007/978-981-16-4126-8_45
摘要

Internet of things (IoT) and artificial intelligence (AI) are becoming support tools for several current technological solutions due to significant advancements of these areas. The development of the IoT in various technological fields has contributed to predicting the behavior of various systems such as mechanical, electronic, and control using sensor networks. On the other hand, deep learning architectures have achieved excellent results in complex tasks, where patterns have been extracted in time series. This study has reviewed the most efficient deep learning architectures for forecasting and obtaining trends over time, together with data produced by IoT sensors. In this way, it is proposed to contribute to applications in fields in which IoT is contributing a technological advance such as smart cities, industry 4.0, sustainable agriculture, or robotics. Among the architectures studied in this article related to the process of time-series data, we have: long short-term memory (LSTM) for its high precision in prediction and the ability to automatically process input sequences; convolutional neural networks (CNN) mainly in human activity recognition; hybrid architectures in which there is a convolutional layer for data pre-processing and recurrent neural networks (RNN) for data fusion from different sensors and their subsequent classification, and stacked LSTM autoencoders that extract the variables from time series in an unsupervised way without the need of manual data pre-processing. Finally, well-known technologies in natural language processing are also used in time-series data prediction, such as the attention mechanism and embeddings obtaining promising results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nana7发布了新的文献求助10
1秒前
1秒前
诺z发布了新的文献求助10
1秒前
和光同尘完成签到,获得积分10
2秒前
rr_发布了新的文献求助10
2秒前
3秒前
公孙朝雨完成签到 ,获得积分10
3秒前
科研通AI2S应助sunshine采纳,获得10
3秒前
YR完成签到,获得积分10
4秒前
wjx发布了新的文献求助80
4秒前
热心子轩应助Jiaocm采纳,获得10
4秒前
海鸥举报强健的天问求助涉嫌违规
4秒前
5秒前
zimuzi发布了新的文献求助10
5秒前
陌语完成签到,获得积分10
6秒前
美好的邴发布了新的文献求助30
6秒前
林距离发布了新的文献求助10
6秒前
shc发布了新的文献求助10
6秒前
6秒前
www发布了新的文献求助50
6秒前
依灵完成签到,获得积分10
7秒前
小卷粉完成签到 ,获得积分10
7秒前
7秒前
123完成签到,获得积分20
7秒前
高高应助hbb采纳,获得10
7秒前
苦学僧应助AAAaa采纳,获得10
8秒前
天行者完成签到,获得积分10
9秒前
nancy93228完成签到 ,获得积分10
10秒前
JamesPei应助查百到采纳,获得10
10秒前
nana7完成签到,获得积分10
10秒前
10秒前
求一篇pdf发布了新的文献求助10
10秒前
11秒前
小马甲应助难过仙人掌采纳,获得30
11秒前
科研通AI5应助rr_采纳,获得10
11秒前
11秒前
betty完成签到,获得积分10
12秒前
淡淡冰淇淋完成签到,获得积分20
12秒前
12秒前
wjx发布了新的文献求助30
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4463841
求助须知:如何正确求助?哪些是违规求助? 3926342
关于积分的说明 12184337
捐赠科研通 3579066
什么是DOI,文献DOI怎么找? 1966390
邀请新用户注册赠送积分活动 1005037
科研通“疑难数据库(出版商)”最低求助积分说明 899444