Estimation of heavy metal concentrations in reclaimed mining soils using reflectance spectroscopy.

偏最小二乘回归 平滑的 支持向量机 转化(遗传学) 生物系统 数学 化学 计算机科学 统计 人工智能 生物化学 生物 基因
作者
Kun Tan,Yuanyuan Ye,Peijun Du,Qianqian Zhang
出处
期刊:PubMed 卷期号:34 (12): 3317-22 被引量:30
链接
标识
摘要

A selection of soil samples from reclaimed mining areas were prepared to establish the quantitative inversion models of the soil heavy metal (As, Zn, Cu, Cr, and Pb) concentrations. The concentrations of the soil heavy metals and the visible and near-infrared spectra of the soil samples were obtained in a darkroom. Firstly, smoothing processing was used to smooth the noise in the original spectra, and the spectral transformation techniques of first derivative (FD), continuum removal (CR), and standard normal variate (SNV) were used to promote the model stability and the accuracy of the prediction. Through correlation analysis, the feature bands of the different transformed spectra were extracted. Finally, three different inversion models were adopted and compared, i. e., traditional multiple linear regression (MLR), partial least squares regression (PLSR), and least squares support vector machines (LS-SVM) modeling. The results indicated that: (1) the stability and accuracy of the inversion models established by the different transformed spectra was high, in which LS-SVM was better than PLSR, and PLSR was better than MLR (except for a few cases); and (2) the spectral features extracted from the different transformed spectra had a certain influence on the inversion model, in which the results based on CR transformation and SNV transformation were better than the FD transformation. Therefore, the quantitative estimation of heavy metal concentrations by the use of reflectance spectroscopy is feasible, and the pre-processing is essential to improve the accuracy of the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yamahah发布了新的文献求助10
刚刚
张匀继完成签到,获得积分10
1秒前
2秒前
阿洁发布了新的文献求助10
2秒前
2秒前
2秒前
青天白日完成签到,获得积分10
2秒前
yansisi完成签到 ,获得积分10
3秒前
点点完成签到 ,获得积分10
3秒前
回答发布了新的文献求助10
3秒前
yanyan完成签到,获得积分10
3秒前
4秒前
5秒前
XQ转运发布了新的文献求助10
5秒前
5秒前
咕咕完成签到,获得积分10
6秒前
阿洁完成签到,获得积分20
7秒前
7秒前
7秒前
8秒前
在水一方应助我爱科研采纳,获得10
8秒前
不倦发布了新的文献求助20
9秒前
花花123发布了新的文献求助10
9秒前
he发布了新的文献求助10
9秒前
10秒前
图图发布了新的文献求助10
10秒前
hyominhsu发布了新的文献求助10
12秒前
1111111发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助50
13秒前
小温同学发布了新的文献求助10
13秒前
15秒前
15秒前
16秒前
kokodayour完成签到,获得积分10
16秒前
传奇3应助Anxinxin采纳,获得10
17秒前
yappy123应助槑槑采纳,获得10
17秒前
feng发布了新的文献求助20
20秒前
空空如也完成签到,获得积分10
21秒前
wangxia发布了新的文献求助20
22秒前
wanci应助机智的琪采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4886200
求助须知:如何正确求助?哪些是违规求助? 4171169
关于积分的说明 12943805
捐赠科研通 3931690
什么是DOI,文献DOI怎么找? 2157185
邀请新用户注册赠送积分活动 1175580
关于科研通互助平台的介绍 1080137