亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Experiments

材料科学
作者
Chung-Shu Wu,Michael S. Hamada
出处
期刊:Wiley series in probability and statistics 被引量:400
标识
DOI:10.1002/9781119470007
摘要

Preface to the Second Edition. Preface to the First Edition. Suggestions of Topics for Instructors. List of Experiments and Data Sets. 1 Basic Concepts for Experimental Design and Introductory Regression Analysis. 1.1 Introduction and Historical Perspective. 1.2 A Systematic Approach to the Planning and Implementation of Experiments. 1.3 Fundamental Principles: Replication, Randomization, and Blocking. 1.4 Simple Linear Regression. 1.5 Testing of Hypothesis and Interval Estimation. 1.6 Multiple Linear Regression. 1.7 Variable Selection in Regression Analysis. 1.8 Analysis of Air Pollution Data. 1.9 Practical Summary. 2 Experiments with a Single Factor. 2.1 One-Way Layout. 2.2 Multiple Comparisons. 2.3 Quantitative Factors and Orthogonal Polynomials. 2.4 Expected Mean Squares and Sample Size Determination. 2.5 One-Way Random Effects Model. 2.6 Residual Analysis: Assessment of Model Assumptions. 2.7 Practical Summary. 3 Experiments with More Than One Factor. 3.1 Paired Comparison Designs. 3.2 Randomized Block Designs. 3.3 Two-Way Layout: Factors With Fixed Levels. 3.4 Two-Way Layout: Factors With Random Levels. 3.5 Multi-Way Layouts. 3.6 Latin Square Designs: Two Blocking Variables. 3.7 Graeco-Latin Square Designs. 3.8 Balanced Incomplete Block Designs. 3.9 Split-Plot Designs. 3.10 Analysis of Covariance: Incorporating Auxiliary Information. 3.11 Transformation of the Response. 3.12 Practical Summary. 4 Full Factorial Experiments at Two Levels. 4.1 An Epitaxial Layer Growth Experiment. 4.2 Full Factorial Designs at Two Levels: A General Discussion. 4.3 Factorial Effects and Plots. 4.4 Using Regression to Compute Factorial Effects. 4.5 ANOVA Treatment of Factorial Effects. 4.6 Fundamental Principles for Factorial Effects: Effect Hierarchy, Effect Sparsity, and Effect Heredity. 4.7 Comparisons with the One-Factor-at-a-Time Approach. 4.8 Normal and Half-Normal Plots for Judging Effect Significance. 4.9 Lenth's Method: Testing Effect Significance for Experiments Without Variance Estimates. 4.10 Nominal-the-Best Problem and Quadratic Loss Function. 4.11 Use of Log Sample Variance for Dispersion Analysis. 4.12 Analysis of Location and Dispersion: Revisiting the Epitaxial Layer Growth Experiment. 4.13 Test of Variance Homogeneity and Pooled Estimate of Variance. 4.14 Studentized Maximum Modulus Test: Testing Effect Significance for Experiments with Variance Estimates. 4.15 Blocking and Optimal Arrangement of 2 k Factorial Designs in 2 q Blocks. 4.16 Practical Summary. 5 Fractional Factorial Experiments at Two Levels. 5.1 A Leaf Spring Experiment. 5.2 Fractional Factorial Designs: Effect Aliasing and the Criteria Of Resolution and Minimum Aberration. 5.3 Analysis of Fractional Factorial Experiments. 5.4 Techniques for Resolving the Ambiguities in Aliased Effects. 5.5 Selection of 2 k-p Designs Using Minimum Aberration and Related Criteria. 5.6 Blocking in Fractional Factorial Designs. 5.7 Practical Summary. 6 Full Factorial and Fractional Factorial Experiments at Three Levels. 6.1 A Seat-Belt Experiment. 6.2 Larger-the-Better and Smaller-the-Better Problems. 6.3 3 k Full Factorial Designs. 6.4 3 k-p Fractional Factorial Designs. 6.5 Simple Analysis Methods: Plots and Analysis of Variance. 6.6 An Alternative Analysis Method. 6.7 Analysis Strategies for Multiple Responses I: Out-of-Spec Probabilities. 6.8 Blocking in 3 k and 3 k-p Designs. 6.9 Practical Summary. 7 Other Design and Analysis Techniques for Experiments at More Than Two Levels. 7.1 A Router Bit Experiment Based on a Mixed Two-Level and Four-Level Design. 7.2 Method of Replacement and Construction of 2 m 4 n Designs. 7.3 Minimum Aberration 2 m 4 n Designs with n = 1, 2. 7.4 An Analysis Strategy for 2 m 4 n Experiments. 7.5 Analysis of the Router Bit Experiment. 7.6 A Paint Experiment Based on a Mixed Two-Level and Three-Level Design. 7.7 Design and Analysis of 36-Run Experiments at Two And Three Levels. 7.8 r k-p Fractional Factorial Designs for any Prime Number r . 7.9 Related Factors: Method of Sliding Levels, Nested Effects Analysis, and Response Surface Modeling. 7.10 Practical Summary. 8 Nonregular Designs: Construction and Properties. 8.1 Two Experiments: Weld-Repaired Castings and Blood Glucose Testing. 8.2 Some Advantages of Nonregular Designs Over the 2 k-p and 3 k-p Series of Designs. 8.3 A Lemma on Orthogonal Arrays. 8.4 Plackett-Burman Designs and Hall's Designs. 8.5 A Collection of Useful Mixed-Level Orthogonal Arrays. 8.6 Construction of Mixed-Level Orthogonal Arrays Based on Difference Matrices. 8.7 Construction of Mixed-Level Orthogonal Arrays Through the Method of Replacement. 8.8 Orthogonal Main-Effect Plans Through Collapsing Factors. 8.9 Practical Summary. 9 Experiments with Complex Aliasing. 9.1 Partial Aliasing of Effects and the Alias Matrix. 9.2 Traditional Analysis Strategy: Screening Design and Main Effect Analysis. 9.3 Simplification of Complex Aliasing via Effect Sparsity. 9.4 An Analysis Strategy for Designs with Complex Aliasing. 9.5 A Bayesian Variable Selection Strategy for Designs with Complex Aliasing. 9.6 Supersaturated Designs: Design Construction and Analysis. 9.7 Practical Summary. 10 Response Surface Methodology. 10.1 A Ranitidine Separation Experiment. 10.2 Sequential Nature of Response Surface Methodology. 10.3 From First-Order Experiments to Second-Order Experiments: Steepest Ascent Search and Rectangular Grid Search. 10.4 Analysis of Second-Order Response Surfaces. 10.5 Analysis of the Ranitidine Experiment. 10.6 Analysis Strategies for Multiple Responses II: Contour Plots and the Use of Desirability Functions. 10.7 Central Composite Designs. 10.8 Box-Behnken Designs and Uniform Shell Designs. 10.9 Practical Summary. 11 Introduction to Robust Parameter Design. 11.1 A Robust Parameter Design Perspective of the Layer Growth and Leaf Spring Experiments. 11.2 Strategies for Reducing Variation. 11.3 Noise (Hard-to-Control) Factors. 11.4 Variation Reduction Through Robust Parameter Design. 11.5 Experimentation and Modeling Strategies I: Cross Array. 11.6 Experimentation and Modeling Strategies II: Single Array and Response Modeling. 11.7 Cross Arrays: Estimation Capacity and Optimal Selection. 11.8 Choosing Between Cross Arrays and Single Arrays. 11.9 Signal-to-Noise Ratio and Its Limitations for Parameter Design Optimization. 11.10 Further Topics. 11.11 Practical Summary. 12 Robust Parameter Design for Signal-Response Systems. 12.1 An Injection Molding Experiment. 12.2 Signal-Response Systems and their Classification. 12.3 Performance Measures for Parameter Design Optimization. 12.4 Modeling and Analysis Strategies. 12.5 Analysis of the Injection Molding Experiment. 12.6 Choice of Experimental Plans. 12.7 Practical Summary. 13 Experiments for Improving Reliability. 13.1 Experiments with Failure Time Data. 13.2 Regression Model for Failure Time Data. 13.3 A Likelihood Approach for Handling Failure Time Data with Censoring. 13.4 Design-Dependent Model Selection Strategies. 13.5 A Bayesian Approach to Estimation and Model Selection for Failure Time Data. 13.6 Analysis of Reliability Experiments with Failure Time Data. 13.7 Other Types of Reliability Data. 13.8 Practical Summary. 14 Analysis of Experiments with Nonnormal Data. 14.1 A Wave Soldering Experiment with Count Data. 14.2 Generalized Linear Models. 14.3 Likelihood-Based Analysis of Generalized Linear Models. 14.4 Likelihood-Based Analysis of the Wave Soldering Experiment. 14.5 Bayesian Analysis of Generalized Linear Models. 14.6 Bayesian Analysis of the Wave Soldering Experiment. 14.7 Other Uses and Extensions of Generalized Linear Models and Regression Models for Nonnormal Data. 14.8 Modeling and Analysis for Ordinal Data. 14.9 Analysis of Foam Molding Experiment. 14.10 Scoring: A Simple Method for Analyzing Ordinal Data. 14.11 Practical Summary. Appendix A Upper Tail Probabilities of the Standard Normal Distribution. Appendix B Upper Percentiles of the t Distribution. Appendix C Upper Percentiles of the chi 2 Distribution. Appendix D Upper Percentiles of the F Distribution. Appendix E Upper Percentiles of the Studentized Range Distribution. Appendix F Upper Percentiles of the Studentized Maximum Modulus Distribution. Appendix G Coefficients of Orthogonal Contrast Vectors. Appendix H Critical Values for Lenth's Method. Author Index. Subject Index.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧的语兰完成签到 ,获得积分10
12秒前
22秒前
27秒前
ding应助HJJHJH采纳,获得10
43秒前
科研通AI5应助科研通管家采纳,获得10
44秒前
herococa完成签到,获得积分10
1分钟前
LRxxx完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
HJJHJH发布了新的文献求助10
2分钟前
Murphy完成签到 ,获得积分10
2分钟前
敏感剑鬼关注了科研通微信公众号
2分钟前
Ji完成签到,获得积分10
2分钟前
忐忑的黑猫应助麻瓜采纳,获得10
2分钟前
可可发布了新的文献求助10
2分钟前
麻瓜完成签到,获得积分10
3分钟前
jokerhoney完成签到,获得积分10
3分钟前
automan发布了新的文献求助10
3分钟前
4分钟前
笑笑发布了新的文献求助10
4分钟前
安静的瑾瑜完成签到 ,获得积分10
4分钟前
淡定的安柏完成签到,获得积分10
4分钟前
笑笑完成签到,获得积分10
4分钟前
月亮完成签到 ,获得积分10
4分钟前
FashionBoy应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
灵巧的语兰关注了科研通微信公众号
4分钟前
Li完成签到,获得积分10
4分钟前
rengar完成签到,获得积分10
4分钟前
稻子完成签到 ,获得积分10
5分钟前
王桑完成签到 ,获得积分10
5分钟前
望其项背完成签到,获得积分10
5分钟前
小胡爱科研完成签到 ,获得积分10
6分钟前
6分钟前
朱佳慧发布了新的文献求助10
6分钟前
科研通AI5应助zbw采纳,获得10
6分钟前
6分钟前
zbw完成签到,获得积分20
6分钟前
zbw发布了新的文献求助10
6分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780810
求助须知:如何正确求助?哪些是违规求助? 3326334
关于积分的说明 10226562
捐赠科研通 3041495
什么是DOI,文献DOI怎么找? 1669449
邀请新用户注册赠送积分活动 799051
科研通“疑难数据库(出版商)”最低求助积分说明 758732