A Combined Short Time Fourier Transform and Image Classification Transformer Model for Rolling Element Bearings Fault Diagnosis in Electric Motors

短时傅里叶变换 滚动轴承 计算机科学 人工智能 卷积神经网络 变压器 振动 模式识别(心理学) 分类器(UML) 傅里叶变换 特征提取 快速傅里叶变换 工程类 算法 电压 傅里叶分析 电气工程 数学分析 物理 量子力学 数学
作者
Christos T. Alexakos,Yannis L. Karnavas,Maria Drakaki,Ioannis A. Tziafettas
出处
期刊:Machine learning and knowledge extraction [Multidisciplinary Digital Publishing Institute]
卷期号:3 (1): 228-242 被引量:32
标识
DOI:10.3390/make3010011
摘要

The most frequent faults in rotating electrical machines occur in their rolling element bearings. Thus, an effective health diagnosis mechanism of rolling element bearings is necessary from operational and economical points of view. Recently, convolutional neural networks (CNNs) have been proposed for bearing fault detection and identification. However, two major drawbacks of these models are (a) their lack of ability to capture global information about the input vector and to derive knowledge about the statistical properties of the latter and (b) the high demand for computational resources. In this paper, short time Fourier transform (STFT) is proposed as a pre-processing step to acquire time-frequency representation vibration images from raw data in variable healthy or faulty conditions. To diagnose and classify the vibration images, the image classification transformer (ICT), inspired from the transformers used for natural language processing, has been suitably adapted to work as an image classifier trained in a supervised manner and is also proposed as an alternative method to CNNs. Simulation results on a famous and well-established rolling element bearing fault detection benchmark show the effectiveness of the proposed method, which achieved 98.3% accuracy (on the test dataset) while requiring substantially fewer computational resources to be trained compared to the CNN approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
玺月洛离完成签到,获得积分10
1秒前
Orange应助Never stall采纳,获得10
1秒前
爆米花应助勤恳的越泽采纳,获得10
2秒前
3秒前
共享精神应助张小度ever采纳,获得10
3秒前
liky.完成签到 ,获得积分10
3秒前
3秒前
4秒前
猷鲛完成签到,获得积分10
4秒前
Trost完成签到,获得积分10
5秒前
zyyla完成签到,获得积分20
5秒前
猜猜我是谁完成签到,获得积分10
5秒前
李健的小迷弟应助咕噜采纳,获得10
5秒前
wanci应助王昭采纳,获得10
5秒前
Ava应助TqcPisces采纳,获得10
6秒前
6秒前
6秒前
孙兴燕发布了新的文献求助10
6秒前
WANG发布了新的文献求助10
7秒前
Drew完成签到,获得积分10
7秒前
斯文败类应助彪壮的绮烟采纳,获得10
7秒前
娃哈哈完成签到,获得积分10
7秒前
Jasper应助loin采纳,获得10
7秒前
7秒前
8秒前
8秒前
9秒前
9秒前
JL发布了新的文献求助10
9秒前
去有风的地方完成签到 ,获得积分10
10秒前
科研通AI5应助雨雪采纳,获得10
10秒前
科研通AI5应助lizhiqian2024采纳,获得10
10秒前
11秒前
Flac发布了新的文献求助10
11秒前
12秒前
12秒前
江彪发布了新的文献求助10
12秒前
TT完成签到,获得积分10
14秒前
野小子发布了新的文献求助10
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806041
求助须知:如何正确求助?哪些是违规求助? 3350870
关于积分的说明 10351903
捐赠科研通 3066760
什么是DOI,文献DOI怎么找? 1684143
邀请新用户注册赠送积分活动 809333
科研通“疑难数据库(出版商)”最低求助积分说明 765463