主成分分析
环面
概率逻辑
组分(热力学)
校长(计算机安全)
数学
统计
物理
计算机科学
几何学
计算机安全
热力学
作者
Anahita Nodehi,Mousa Golalizadeh,Mehdi Maadooliat,Claudio Agostinelli
出处
期刊:Cornell University - arXiv
日期:2020-01-01
被引量:2
标识
DOI:10.48550/arxiv.2008.10725
摘要
Analyzing data in non-Euclidean spaces, such as bioinformatics, biology, and geology, where variables represent directions or angles, poses unique challenges. This type of data is known as circular data in univariate cases and can be termed spherical or toroidal in multivariate contexts. In this paper, we introduce a novel extension of Probabilistic Principal Component Analysis (PPCA) designed for toroidal (or torus) data, termed Torus Probabilistic PCA (TPPCA). We provide detailed algorithms for implementing TPPCA and demonstrate its applicability to torus data. To assess the efficacy of TPPCA, we perform comparative analyses using a simulation study and three real datasets. Our findings highlight the advantages and limitations of TPPCA in handling torus data. Furthermore, we propose statistical tests based on likelihood ratio statistics to determine the optimal number of components, enhancing the practical utility of TPPCA for real-world applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI