弹性(材料科学)
供应链
能见度
业务
供应链风险管理
风险管理
风险分析(工程)
可视化
大数据
心理弹性
业务连续性
大流行
2019年冠状病毒病(COVID-19)
过程管理
数据科学
供应链管理
计算机科学
计算机安全
营销
数据挖掘
服务管理
疾病
心理治疗师
物理
传染病(医学专业)
病理
财务
光学
热力学
医学
心理学
作者
Dmitry Ivanov,Alexandre Dolgui
标识
DOI:10.1080/09537287.2020.1768450
摘要
We theorize a notion of a digital supply chain (SC) twin – a computerized model that represents network states for any given moment in real time. We explore the conditions surrounding the design and implementation of the digital twins when managing disruption risks in SCs. The combination of model-based and data-driven approaches allows uncovering the interrelations of risk data, disruption modeling, and performance assessment. The SC shocks and adaptations amid the COVID-19 pandemic along with post-pandemic recoveries provide indisputable evidences for the urgent needs of digital twins for mapping supply networks and ensuring visibility. The results of this study contribute to the research and practice of SC risk management by enhancing predictive and reactive decisions to utilize the advantages of SC visualization, historical disruption data analysis, and real-time disruption data and ensure end-to-end visibility and business continuity in global companies.
科研通智能强力驱动
Strongly Powered by AbleSci AI