Early Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer Sonography Using Siamese Convolutional Neural Networks

学习迁移 深度学习 乳腺癌 卷积神经网络 乳腺超声检查 模式识别(心理学) 人工神经网络 逻辑回归 先验与后验 接收机工作特性 机器学习 医学 计算机科学 癌症 乳腺摄影术 内科学 人工智能 哲学 认识论
作者
Michał Byra,Katarzyna Dobruch‐Sobczak,Ziemowit Klimonda,Hanna Piotrzkowska‐Wróblewska,Jerzy Litniewski
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (3): 797-805 被引量:55
标识
DOI:10.1109/jbhi.2020.3008040
摘要

Early prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer is crucial for guiding therapy decisions. In this work, we propose a deep learning based approach for the early NAC response prediction in ultrasound (US) imaging. We used transfer learning with deep convolutional neural networks (CNNs) to develop the response prediction models. The usefulness of two transfer learning techniques was examined. First, a CNN pre-trained on the ImageNet dataset was utilized. Second, we applied double transfer learning, the CNN pre-trained on the ImageNet dataset was additionally fine-tuned with breast mass US images to differentiate malignant and benign lesions. Two prediction tasks were investigated. First, a L1 regularized logistic regression prediction model was developed based on generic neural features extracted from US images collected before the chemotherapy (a priori prediction). Second, Siamese CNNs were used to quantify differences between US images collected before the treatment and after the first and second course of NAC. The proposed methods were evaluated using US data collected from 39 tumors. The better performing deep learning models achieved areas under the receiver operating characteristic curve of 0.797 and 0.847 in the case of the a priori prediction and the Siamese model, respectively. The proposed approach was compared with a method based on handcrafted morphological features. Our study presents the feasibility of using transfer learning with CNNs for the NAC response prediction in US imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gnufgg完成签到,获得积分10
2秒前
冯豆豆要发SCI完成签到,获得积分20
3秒前
爱笑千万发布了新的文献求助20
6秒前
傲娇的夜山完成签到,获得积分10
7秒前
8秒前
12秒前
12秒前
cyn完成签到,获得积分10
13秒前
luodd完成签到 ,获得积分10
15秒前
17秒前
zcz发布了新的文献求助10
17秒前
李七七发布了新的文献求助10
18秒前
小马甲应助zdy!采纳,获得10
19秒前
20秒前
Luka应助ClancyJacky采纳,获得50
20秒前
起风了完成签到 ,获得积分10
20秒前
李健的小迷弟应助小白采纳,获得10
22秒前
怡然颦完成签到,获得积分10
25秒前
平淡盼旋发布了新的文献求助10
26秒前
高兴纸鹤完成签到,获得积分10
27秒前
灿cancan发布了新的文献求助10
28秒前
29秒前
33秒前
38秒前
43秒前
hackfeng完成签到,获得积分10
44秒前
46秒前
46秒前
48秒前
小小莫发布了新的文献求助10
51秒前
nenoaowu发布了新的文献求助10
51秒前
51秒前
52秒前
刘刘发布了新的文献求助10
53秒前
jonghuang发布了新的文献求助10
53秒前
青衣完成签到,获得积分10
55秒前
大个应助nenoaowu采纳,获得10
58秒前
Ssyong发布了新的文献求助10
58秒前
小妞妞完成签到,获得积分10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777333
求助须知:如何正确求助?哪些是违规求助? 3322665
关于积分的说明 10210996
捐赠科研通 3037991
什么是DOI,文献DOI怎么找? 1667041
邀请新用户注册赠送积分活动 797933
科研通“疑难数据库(出版商)”最低求助积分说明 758081