材料科学
电解质
环氧乙烷
离子电导率
电导率
金属
氧化物
路易斯酸
无机化学
电池(电)
基础(拓扑)
离子键合
氢
氢键
化学工程
分子
离子
催化作用
有机化学
聚合物
物理化学
复合材料
电极
化学
功率(物理)
冶金
数学分析
工程类
物理
量子力学
数学
共聚物
作者
Zhong Xu,Tao Yang,Xiang Chu,Hai Su,Zixing Wang,Ningjun Chen,Bingni Gu,Hepeng Zhang,Weili Deng,Haitao Zhang,Weiqing Yang
标识
DOI:10.1021/acsami.9b20128
摘要
Solid-state composite polymer electrolytes (CPEs) usually suffer from intrinsic low ionic conductivity and a solid–solid interface, badly inhibiting their widespread commercial application in all-solid-state Li-metal battery (ASSLMB) energy storage. Herein, a synergetic strategy using strong Lewis acid–base and weak hydrogen bonds was employed for self-assembly in situ construction of three-dimensional (3D) network-structured poly(ethylene oxide) (PEO) and SiO2 CPEs (PEO@SiO2). Ascribed to this synergistically rigid–flexible coupling dynamic strategy, a harmonious incorporation of monodispersed SiO2 nanoparticles into PEO could remarkably reduce crystallinity of PEO, significantly enhancing the ionic conductivity (∼1.1 × 10–4 S cm–1 at 30 °C) and dramatically facilitating solid electrolyte interface stabilization (electrochemical stability window > 4.8 V at 90 °C). Moreover, the PEO@SiO2-based ASSLMBs possess excellent rate capability over a wide temperature range (∼105 mA h g–1 under 2 C at 90 °C), high temperature cycling capacity (retaining 90 mA h g–1 after 100 cycles at 90 °C), and high specific capacity (146 mA h g–1 under 0.3 C at 90 °C). Unambiguously, these high ionic conductivity CPEs along with excellent flexibility and safety can be one of the most promising candidates for high-performance ASSLMBs, evidently revealing that this synergistically rigid–flexible coupling dynamic strategy will open up a way to exploit the novel high ionic conductivity solid-state electrolytes.
科研通智能强力驱动
Strongly Powered by AbleSci AI