HSI-BERT: Hyperspectral Image Classification Using the Bidirectional Encoder Representation From Transformers

高光谱成像 计算机科学 人工智能 编码器 像素 判别式 计算机视觉 模式识别(心理学) 特征学习 深度学习 空间语境意识 操作系统
作者
Ji He,Lina Zhao,Hongwei Yang,Mengmeng Zhang,Wei Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (1): 165-178 被引量:284
标识
DOI:10.1109/tgrs.2019.2934760
摘要

Deep learning methods have been widely used in hyperspectral image classification and have achieved state-of-the-art performance. Nonetheless, the existing deep learning methods are restricted by a limited receptive field, inflexibility, and difficult generalization problems in hyperspectral image classification. To solve these problems, we propose HSI-BERT, where BERT stands for bidirectional encoder representations from transformers and HSI stands for hyperspectral imagery. The proposed HSI-BERT has a global receptive field that captures the global dependence among pixels regardless of their spatial distance. HSI-BERT is very flexible and enables the flexible and dynamic input regions. Furthermore, HSI-BERT has good generalization ability because the jointly trained HSI-BERT can be generalized from regions with different shapes without retraining. HSI-BERT is primarily built on a multihead self-attention (MHSA) mechanism in an MHSA layer. Moreover, several attentions are learned by different heads, and each head of the MHSA layer encodes the semantic context-aware representation to obtain discriminative features. Because all head-encoded features are merged, the resulting features exhibit spatial-spectral information that is essential for accurate pixel-level classification. Quantitative and qualitative results demonstrate that HSI-BERT outperforms any other CNN-based model in terms of both classification accuracy and computational time and achieves state-of-the-art performance on three widely used hyperspectral image data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kiki完成签到,获得积分10
1秒前
Lucas应助ZZZ采纳,获得10
1秒前
丘比特应助可靠的寒风采纳,获得10
1秒前
有终发布了新的文献求助10
1秒前
优雅的雨完成签到,获得积分10
2秒前
2秒前
2秒前
帅哥发布了新的文献求助10
2秒前
复杂项链完成签到,获得积分10
2秒前
xiaoxiao发布了新的文献求助30
2秒前
3秒前
1112678发布了新的文献求助10
3秒前
Zx_1993应助king采纳,获得20
4秒前
落寞平蝶发布了新的文献求助10
4秒前
NexusExplorer应助summer采纳,获得10
4秒前
charme发布了新的文献求助10
4秒前
bkagyin应助xiao采纳,获得10
4秒前
abc123完成签到,获得积分10
4秒前
碎米花发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
hzbzh完成签到,获得积分10
6秒前
研友_VZG7GZ应助Ran采纳,获得10
6秒前
昵称发布了新的文献求助10
7秒前
karL发布了新的文献求助10
7秒前
zjjj关注了科研通微信公众号
7秒前
7秒前
wang发布了新的文献求助10
8秒前
奶片发布了新的文献求助10
8秒前
寒风发布了新的文献求助10
8秒前
8秒前
提莫将军完成签到,获得积分10
8秒前
8秒前
8秒前
婷婷发布了新的文献求助10
9秒前
sss发布了新的文献求助10
9秒前
明理的天真关注了科研通微信公众号
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261911
求助须知:如何正确求助?哪些是违规求助? 4423050
关于积分的说明 13768354
捐赠科研通 4297554
什么是DOI,文献DOI怎么找? 2358051
邀请新用户注册赠送积分活动 1354404
关于科研通互助平台的介绍 1315457