电解质
材料科学
电化学
X射线光电子能谱
介电谱
阳极
化学工程
阴极
电极
无机化学
化学
工程类
物理化学
作者
Anulekha K. Haridas,Quan Anh Nguyen,Tanguy Terlier,Rachel Blaser,Sibani Lisa Biswal
标识
DOI:10.1021/acsami.0c19347
摘要
This study examines the compatibility of multielectrolyte additives for NMC-silicon lithium-ion batteries. Research studies with Si-based anodes have shown stable reversible cycling using electrolytes containing fluoroethylene carbonate (FEC). At the same time, the electrolyte additive, tris(trimethylsilyl) phosphite (TTMSP), has shown to improve the electrochemical performance of nickel-rich layered cathodes, such as LiNi0.5Mn0.3Co0.2O2 (NMC). However, the combination of these electrolyte additives for the realization of a full-cell NMC-Si lithium-ion battery has not been previously explored. Changes in the electrochemical performance (capacity retention, internal cell resistance, and electrochemical impedance) in half-cells are studied as the ratio of TTMSP and FEC is tuned. At the optimal TTMSP/FEC ratio of 0.33 (T1F3), the NMC-Si full-cells achieve a 2× longer cycle life when compared to the FEC-rich (T0F4) electrolyte. Moreover, T1F3 full-cells demonstrate 1.5 mAh/cm2 areal capacities and high-capacity retention (25% more than T0F4). A detailed investigation of the electrode-electrolyte interfaces is conducted by using time-of-flight secondary ion mass spectroscopy (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The chemical species depth profiles and elemental analysis illustrate adequate hydrogen fluoride (HF) scavenging. These results demonstrate the synergistic effects of electrolyte additives in minimizing the capacity degradation in NMC-Si full-cells by effectively stabilizing the electrode-electrolyte interfaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI