亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Groundwater pollution source identification and apportionment using PMF and PCA-APCA-MLR receptor models in a typical mixed land-use area in Southwestern China

分摊 环境科学 地下水 污染 水文学(农业) 环境工程 土壤科学 生态学 地质学 岩土工程 政治学 法学 生物
作者
Han Zhang,Siqian Cheng,Hongfei Li,Kang Fu,Yi Xu
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:741: 140383-140383 被引量:157
标识
DOI:10.1016/j.scitotenv.2020.140383
摘要

The quality of groundwater in a region is regarded as a function of natural and anthropogenic factors. Receptor models have advantages in source identification and source apportionment by testing the physicochemical properties of receptor samples and emission sources. In our study, receptor models PMF and PCA-APCS-MLR were developed to qualitatively identify the latent sources of groundwater pollution in the study area and quantitatively evaluate the contribution of each source to groundwater quality. The performances of PMF and APCS-MLR models were compared to test their applicability on the assessment of groundwater pollution sources. Results showed that both of the models identified five sources of groundwater contamination with similar main load species of each potential source. The comparable source apportionment of species NO2− and NO3− with two models indicated the reliable source estimation for these species, whereas the contributions of sources to species Fe, Mn, Cl−, SO42− and NH4+ were significantly different due to the large variability of data, difference of uncertainty analysis and algorithm of unexplained variability in the two models. R-squared value between observation and model prediction was 0.603–0.931 in PMF and 0.497–0.859 in PCA-APCS-MLR. The significant disagreement of average source contribution was detected in agricultural source and unexplained variability using PMF and PCA-APCS-MLR models. Average contributions of other sources to groundwater quality parameters had similar estimates between the two models. Higher R2 and smaller proportion of unexplained variability in the PMF model suggested that PMF approach could provide more physically plausible source apportionment in the study area and a more realistic representation of groundwater pollution than solutions from PCA-APCS-MLR model. The study showed the advantages of application of multiple receptor models on achieving reliable source identification and apportionment, particularly, providing a better understanding of applicability of PMF and PCA-APCS-MLR models on the assessment of groundwater pollution sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钱念波完成签到,获得积分10
14秒前
现实的俊驰完成签到 ,获得积分10
21秒前
firesquall完成签到,获得积分10
21秒前
28秒前
32秒前
完美的海发布了新的文献求助10
35秒前
乐乐乐乐乐乐应助钱念波采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
WebCasa应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
完美的海完成签到,获得积分10
1分钟前
WebCasa发布了新的文献求助10
1分钟前
彭于晏应助库里强采纳,获得10
1分钟前
笨笨山芙完成签到 ,获得积分10
2分钟前
lhn完成签到 ,获得积分10
2分钟前
WebCasa应助科研通管家采纳,获得10
3分钟前
WebCasa应助科研通管家采纳,获得10
3分钟前
嘿嘿应助爱笑的静洁采纳,获得10
3分钟前
3分钟前
库里强发布了新的文献求助10
3分钟前
4分钟前
共享精神应助仁爱的帽子采纳,获得10
4分钟前
5分钟前
WebCasa应助科研通管家采纳,获得10
5分钟前
FashionBoy应助科研通管家采纳,获得10
5分钟前
yayika完成签到,获得积分10
5分钟前
两袖清风完成签到 ,获得积分10
5分钟前
WebCasa发布了新的文献求助10
6分钟前
李健的小迷弟应助huang采纳,获得10
6分钟前
7分钟前
huang完成签到,获得积分10
7分钟前
WebCasa应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
情怀应助科研通管家采纳,获得10
7分钟前
huang发布了新的文献求助10
7分钟前
7分钟前
8分钟前
8分钟前
8分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4118284
求助须知:如何正确求助?哪些是违规求助? 3656893
关于积分的说明 11577059
捐赠科研通 3359155
什么是DOI,文献DOI怎么找? 1845531
邀请新用户注册赠送积分活动 910827
科研通“疑难数据库(出版商)”最低求助积分说明 827070