Log-Logistic Analysis of Herbicide Dose-Response Relationships

逻辑回归 杂草科学 逻辑函数 响应分析 统计分析 响应时间 统计 生物 多样性(控制论) 农学 杂草 计算机科学 毒理 数学 医学 计算机图形学(图像) 免疫学
作者
Steven S. Seefeldt,Jens‐Erik Beck Jensen,E. Patrick Fuerst
出处
期刊:Weed Technology [Cambridge University Press]
卷期号:9 (2): 218-227 被引量:1330
标识
DOI:10.1017/s0890037x00023253
摘要

Dose-response studies are an important tool in weed science. The use of such studies has become especially prevalent following the widespread development of herbicide resistant weeds. In the past, analyses of dose-response studies have utilized various types of transformations and equations which can be validated with several statistical techniques. Most dose-response analysis methods 1) do not accurately describe data at the extremes of doses and 2) do not provide a proper statistical test for the difference(s) between two or more dose-response curves. Consequently, results of dose-response studies are analyzed and reported in a great variety of ways, and comparison of results among various researchers is not possible. The objective of this paper is to review the principles involved in dose-response research and explain the log-logistic analysis of herbicide dose-response relationships. In this paper the log-logistic model is illustrated using a nonlinear computer analysis of experimental data. The log-logistic model is an appropriate method for analyzing most dose-response studies. This model has been used widely and successfully in weed science for many years in Europe. The log-logistic model possesses several clear advantages over other analysis methods and the authors suggest that it should be widely adopted as a standard herbicide dose-response analysis method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
happy完成签到,获得积分10
1秒前
yanjie发布了新的文献求助10
1秒前
棕熊熊应助调皮帆布鞋采纳,获得10
1秒前
江伊发布了新的文献求助10
1秒前
John完成签到 ,获得积分10
2秒前
seasonweng发布了新的文献求助10
2秒前
cdercder应助黄焖鸡采纳,获得10
2秒前
Tetrahydron完成签到,获得积分20
2秒前
典雅的静发布了新的文献求助10
2秒前
登录中发布了新的文献求助10
2秒前
2秒前
3秒前
Singularity应助柳白采纳,获得10
3秒前
好啊哈发布了新的文献求助10
3秒前
熊莉关注了科研通微信公众号
3秒前
小羊完成签到,获得积分20
4秒前
4秒前
liyiren完成签到,获得积分10
4秒前
dudu完成签到 ,获得积分10
4秒前
5秒前
科研通AI5应助snowy_owl采纳,获得10
5秒前
6秒前
6秒前
mayufei发布了新的文献求助10
6秒前
喵药师发布了新的文献求助10
6秒前
6秒前
雷电将军完成签到,获得积分10
7秒前
852应助优秀谷波采纳,获得10
7秒前
yu完成签到,获得积分10
8秒前
科研通AI5应助武勇采纳,获得10
8秒前
hbydyy发布了新的文献求助10
8秒前
8秒前
炙热的钧发布了新的文献求助30
9秒前
羊咩咩关注了科研通微信公众号
9秒前
9秒前
科研小白发布了新的文献求助10
10秒前
10秒前
小羊发布了新的文献求助10
10秒前
杰尼龟完成签到,获得积分10
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838196
求助须知:如何正确求助?哪些是违规求助? 3380471
关于积分的说明 10514526
捐赠科研通 3100044
什么是DOI,文献DOI怎么找? 1707291
邀请新用户注册赠送积分活动 821625
科研通“疑难数据库(出版商)”最低求助积分说明 772816