MIML-FCN+: Multi-Instance Multi-Label Learning via Fully Convolutional Networks with Privileged Information

计算机科学 人工智能 水准点(测量) 卷积神经网络 灵活性(工程) 利用 跳跃式监视 对象(语法) 短语 机器学习 深度学习 数学 大地测量学 计算机安全 统计 地理
作者
Hao Yang,Joey Tianyi Zhou,Jianfei Cai,Yew-Soon Ong
标识
DOI:10.1109/cvpr.2017.635
摘要

Multi-instance multi-label (MIML) learning has many interesting applications in computer visions, including multi-object recognition and automatic image tagging. In these applications, additional information such as bounding-boxes, image captions and descriptions is often available during training phrase, which is referred as privileged information (PI). However, as existing works on learning using PI only consider instance-level PI (privileged instances), they fail to make use of bag-level PI (privileged bags) available in MIML learning. Therefore, in this paper, we propose a two-stream fully convolutional network, named MIML-FCN+, unified by a novel PI loss to solve the problem of MIML learning with privileged bags. Compared to the previous works on PI, the proposed MIML-FCN+ utilizes the readily available privileged bags, instead of hard-to-obtain privileged instances, making the system more general and practical in real world applications. As the proposed PI loss is convex and SGD-compatible and the framework itself is a fully convolutional network, MIML FCN+ can be easily integrated with state-of-the-art deep learning networks. Moreover, the flexibility of convolutional layers allows us to exploit structured correlations among instances to facilitate more effective training and testing. Experimental results on three benchmark datasets demonstrate the effectiveness of the proposed MIML-FCN+, outperforming state-of-the-art methods in the application of multi-object recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
林强完成签到,获得积分10
1秒前
王艺静关注了科研通微信公众号
1秒前
李爱国应助sam采纳,获得10
4秒前
罗佳佳发布了新的文献求助10
6秒前
9秒前
小小发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
11秒前
研友_LNBW5L完成签到,获得积分10
12秒前
12秒前
lily完成签到,获得积分10
13秒前
13秒前
胡萝卜发布了新的文献求助10
14秒前
科研通AI5应助秋日思语采纳,获得10
14秒前
松松果发布了新的文献求助10
14秒前
14秒前
16秒前
搜集达人应助小树枝采纳,获得10
16秒前
小无完成签到,获得积分10
16秒前
sam发布了新的文献求助10
16秒前
17秒前
科研通AI5应助研友_LNBW5L采纳,获得10
17秒前
梓晴发布了新的文献求助10
18秒前
zcx给zcx的求助进行了留言
18秒前
香蕉觅云应助张承昊采纳,获得10
18秒前
王艺静发布了新的文献求助30
19秒前
罗佳佳完成签到,获得积分20
20秒前
巫剑完成签到,获得积分10
21秒前
Akim应助胡萝卜采纳,获得10
22秒前
可达鸭发布了新的文献求助10
22秒前
24秒前
25秒前
25秒前
打打应助22222采纳,获得30
26秒前
28秒前
桐桐应助研友_LNBW5L采纳,获得10
28秒前
就是笨怎么了完成签到,获得积分10
28秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209018
求助须知:如何正确求助?哪些是违规求助? 4386324
关于积分的说明 13660666
捐赠科研通 4245433
什么是DOI,文献DOI怎么找? 2329264
邀请新用户注册赠送积分活动 1327101
关于科研通互助平台的介绍 1279391