DBGANet: Dual-Branch Geometric Attention Network for Accurate 3D Tooth Segmentation

计算机科学 分割 人工智能 背景(考古学) 计算机视觉 边界(拓扑) 点(几何) 模式识别(心理学) 数学 几何学 数学分析 古生物学 生物
作者
Zhijie Lin,Zhaoshui He,Xu Wang,Bing Zhang,Chang Liu,Wenqing Su,Ji Tan,Shengli Xie
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 4285-4298 被引量:26
标识
DOI:10.1109/tcsvt.2023.3331589
摘要

Accurate segmentation of 3D dental models derived from intra-oral scanners (IOS) is one of the key steps in many digital dental applications such as orthodontics and implants. However, it is difficult to accurately segment individual teeth and gums in 3D dental models due to the following problems: 1) the shape and appearance of adjacent teeth are very similar, which is easy to be misidentified; 2) the boundary between teeth and gums is often indistinct, especially in orthodontic patients with abnormalities such as missing and crowded teeth. To solve such problems, a Dual-Branch Geometric Attention Network (DBGANet) for 3D tooth segmentation is proposed, which can capture tooth geometric structure and detailed boundary information from multi-view geometric features encoded by 3D coordinates and normal vectors. The framework contains two branches, i.e., C-branch and N-branch. First, centroid-guided separable attention is designed in the C-branch to learn global context information by modeling the spatial dependencies of tooth point clouds, which can capture the overall geometric structure of teeth to better distinguish adjacent teeth with similar appearance. Then, Gaussian neighbor attention is designed in the N-branch to encode normal vectors to highlight detailed differences between geometric features at different points, which helps to refine the boundaries of teeth and gingiva for more accurate and smooth tooth segmentation. Extensive experiments on the real-patient datasets of 3D dental models demonstrate that the proposed DBGANet significantly outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迅速千愁完成签到 ,获得积分10
3秒前
呆萌滑板完成签到 ,获得积分10
4秒前
4秒前
狂野砖头完成签到 ,获得积分10
6秒前
明某到此一游完成签到 ,获得积分10
8秒前
10秒前
小李完成签到 ,获得积分10
11秒前
随影相伴发布了新的文献求助30
15秒前
孳孳为善6387完成签到,获得积分10
23秒前
lql完成签到 ,获得积分10
24秒前
24秒前
蔚蓝完成签到 ,获得积分10
26秒前
redamancy完成签到 ,获得积分10
28秒前
Wang发布了新的文献求助10
28秒前
刘涵完成签到 ,获得积分10
31秒前
trayheep发布了新的文献求助20
34秒前
34秒前
xiaoxioayixi完成签到 ,获得积分10
35秒前
兔兔完成签到 ,获得积分10
40秒前
脑洞疼应助科研通管家采纳,获得10
42秒前
余味应助科研通管家采纳,获得10
42秒前
Jasper应助科研通管家采纳,获得50
42秒前
42秒前
cdercder应助科研通管家采纳,获得10
42秒前
风不尽,树不静完成签到 ,获得积分10
43秒前
keleboys完成签到 ,获得积分10
43秒前
trayheep完成签到,获得积分10
48秒前
谨慎鹏涛完成签到 ,获得积分10
52秒前
yi完成签到,获得积分10
54秒前
SSDlk完成签到,获得积分10
55秒前
56秒前
蓉儿完成签到 ,获得积分10
56秒前
踏实谷蓝完成签到 ,获得积分10
58秒前
qianci2009完成签到,获得积分10
59秒前
fengjoy发布了新的文献求助10
1分钟前
怡心亭完成签到 ,获得积分10
1分钟前
1分钟前
小成完成签到 ,获得积分10
1分钟前
感动依霜完成签到 ,获得积分10
1分钟前
喝可乐的萝卜兔完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792563
求助须知:如何正确求助?哪些是违规求助? 3336787
关于积分的说明 10282162
捐赠科研通 3053570
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761481