ALADA: A lite automatic data augmentation framework for industrial defect detection

计算机科学 超参数 人工智能 人工神经网络 再培训 机器学习 数据挖掘 任务(项目管理) 模式识别(心理学) 工程类 系统工程 国际贸易 业务
作者
Yuxuan Wang,S.H. Chung,Waqar Ahmed Khan,Tianteng Wang,Jingjun Xu
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:58: 102205-102205 被引量:15
标识
DOI:10.1016/j.aei.2023.102205
摘要

Industrial defect detection is a critical and challenging task in the quality control of manufacturing production. Competent in feature extraction and pattern recognition, deep learning shows great power for classifying and locating defects in industrial products. However, insufficient data records and diverse categories of defects restrict the detection accuracy of data-driven neural networks. One direction to solve such a problem is data augmentation, which aims at generating synthetic copies from existing data and improving the generalizability of detection models. However, confirming a suitable augmentation policy involves either human experience or substantial experiments for augmentation parameters. To address these challenges, in this work, a lite automatic data augmentation (ALADA) framework is proposed to jointly optimize the data augmentation policies and the neural network for industrial defect detection. First, a lite search space is formulated to efficiently sample augmentation policies and generate augmented images for joint optimization. To reduce the hyperparameter tuning efforts for retraining with searched policies, a three-step bi-level optimization scheme is proposed to replace the retraining strategy and update the model and augmentation parameter alternately. To solve the non-differentiable problem in the joint optimization scheme, policy gradient sampling is implemented to estimate the gradient flow efficiently. Experimental results on three industrial defect detection datasets, namely, Tianchi-TILE, GC10-DET, and NEU-DET, reveal that our proposed automatic augmentation framework outperforms the state-of-the-art augmentation methods and effectively improves the accuracy of the baseline defect detection model. The proposed ALADA scheme also alleviates the missed detection of defects in four practical industrial circumstances: textured background, uneven brightness, low contrast, and intraclass difference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰雨Flory完成签到,获得积分10
1秒前
烂漫含雁发布了新的文献求助10
1秒前
2秒前
naturehome完成签到,获得积分10
2秒前
木昜完成签到,获得积分10
3秒前
wanci应助HM采纳,获得10
3秒前
Rz发布了新的文献求助40
3秒前
4秒前
赘婿应助LYT采纳,获得10
4秒前
4秒前
4秒前
5秒前
iCloud完成签到,获得积分10
5秒前
隐形曼青应助博修采纳,获得10
5秒前
6秒前
美啊美完成签到,获得积分10
6秒前
小文完成签到,获得积分20
6秒前
多多完成签到,获得积分10
7秒前
7秒前
打工牛牛应助jfy采纳,获得10
7秒前
caiia完成签到,获得积分10
7秒前
健忘傲柏完成签到,获得积分10
7秒前
鹿子默完成签到,获得积分10
7秒前
温言完成签到,获得积分10
8秒前
小臭臭完成签到 ,获得积分10
8秒前
zzzz发布了新的文献求助10
8秒前
9秒前
9秒前
烂漫含雁完成签到,获得积分20
9秒前
lxy发布了新的文献求助10
9秒前
10秒前
百里烬言发布了新的文献求助10
11秒前
风轻云淡发布了新的文献求助20
11秒前
bc应助洛尘采纳,获得20
12秒前
鹿子默发布了新的文献求助10
12秒前
温言发布了新的文献求助10
12秒前
13秒前
李彬完成签到,获得积分10
13秒前
猴猴完成签到,获得积分20
13秒前
bao发布了新的文献求助200
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792901
求助须知:如何正确求助?哪些是违规求助? 3337465
关于积分的说明 10285340
捐赠科研通 3054138
什么是DOI,文献DOI怎么找? 1675858
邀请新用户注册赠送积分活动 803795
科研通“疑难数据库(出版商)”最低求助积分说明 761561