Sepsis Prediction in Hospitalized Children: Model Development and Validation

医学 败血症 置信区间 前瞻性队列研究 急诊医学 急诊科 试验预测值 预测值 重症监护医学 内科学 精神科
作者
Rebecca J. Stephen,Michael S. Carroll,Jeremy Hoge,Kimberly Maciorowski,Roderick C. Jones,Kate Lucey,Megan E. O’Connell,C. William Schwab,Jillian Rojas,L. Nelson Sanchez‐Pinto
出处
期刊:Hospital pediatrics [American Academy of Pediatrics]
卷期号:13 (9): 760-767 被引量:7
标识
DOI:10.1542/hpeds.2022-006964
摘要

BACKGROUND AND OBJECTIVES Early recognition and treatment of pediatric sepsis remain mainstay approaches to improve outcomes. Although most children with sepsis are diagnosed in the emergency department, some are admitted with unrecognized sepsis or develop sepsis while hospitalized. Our objective was to develop and validate a prediction model of pediatric sepsis to improve recognition in the inpatient setting. METHODS Patients with sepsis were identified using intention-to-treat criteria. Encounters from 2012 to 2018 were used as a derivation to train a prediction model using variables from an existing model. A 2-tier threshold was determined using a precision-recall curve: an “Alert” tier with high positive predictive value to prompt bedside evaluation and an “Aware” tier with high sensitivity to increase situational awareness. The model was prospectively validated in the electronic health record in silent mode during 2019. RESULTS A total of 55 980 encounters and 793 (1.4%) episodes of sepsis were used for derivation and prospective validation. The final model consisted of 13 variables with an area under the curve of 0.96 (95% confidence interval 0.95–0.97) in the validation set. The Aware tier had 100% sensitivity and the Alert tier had a positive predictive value of 14% (number needed to alert of 7) in the validation set. CONCLUSIONS We derived and prospectively validated a 2-tiered prediction model of inpatient pediatric sepsis designed to have a high sensitivity Aware threshold to enable situational awareness and a low number needed to Alert threshold to minimize false alerts. Our model was embedded in our electronic health record and implemented as clinical decision support, which is presented in a companion article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助青柠采纳,获得10
1秒前
坦率的无春完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
YH_Z发布了新的文献求助10
3秒前
稳重的水蓉完成签到 ,获得积分10
4秒前
夏木发布了新的文献求助10
4秒前
俊逸沛菡完成签到 ,获得积分10
4秒前
zhang完成签到 ,获得积分20
4秒前
昏陈陈完成签到,获得积分10
4秒前
5秒前
科研通AI6应助wyq采纳,获得10
5秒前
pilgrim应助wyq采纳,获得10
5秒前
FashionBoy应助wyq采纳,获得10
5秒前
datou完成签到,获得积分20
5秒前
少年发布了新的文献求助10
6秒前
漂亮的以冬完成签到,获得积分10
6秒前
6秒前
7秒前
麻薯头头发布了新的文献求助10
7秒前
赘婿应助泯珉采纳,获得10
8秒前
完美世界应助keke采纳,获得10
8秒前
拼搏寒凡完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
wulala发布了新的文献求助10
9秒前
9秒前
11秒前
Sand发布了新的文献求助10
11秒前
11秒前
赘婿应助许安采纳,获得10
12秒前
浮游应助一二采纳,获得10
12秒前
科研通AI6应助push采纳,获得10
12秒前
13秒前
健壮问兰发布了新的文献求助10
13秒前
angelinazh发布了新的文献求助10
14秒前
Ava应助JJ采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5332778
求助须知:如何正确求助?哪些是违规求助? 4471287
关于积分的说明 13916741
捐赠科研通 4364940
什么是DOI,文献DOI怎么找? 2398042
邀请新用户注册赠送积分活动 1391272
关于科研通互助平台的介绍 1362062