已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EventKGE: Event knowledge graph embedding with event causal transfer

计算机科学 事件(粒子物理) 嵌入 复杂事件处理 图形 元组 代表(政治) 理论计算机科学 数据挖掘 知识图 人工智能 自然语言处理 数学 离散数学 物理 操作系统 过程(计算) 政治 法学 量子力学 政治学
作者
Daiyi Li,Li Yan,Xiaowen Zhang,Wei Jia,Zongmin Ma
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:278: 110917-110917 被引量:8
标识
DOI:10.1016/j.knosys.2023.110917
摘要

Traditional knowledge graph embedding (KGE) aims to map entities and relations into continuous space vectors to provide high-quality data feature representation for downstream tasks. However, relations in most KGs often only reflect connections between static entities, but cannot represent dynamic activities and state changes of related entities, which makes the KGE models unable to effectively learn rich and comprehensive entity representation. In this paper, we verify the importance of embedding event knowledge in KG representation learning, and propose a novel event KGE model based on event causal transfer (EventKGE), which can effectively maintain the semantic information of events, entities, and relations in the event KG. First, we define a six tuple-based event representation model consisting of event trigger words, event arguments and event description text, which can effectively express events in a structured form. Second, for a given event KG, the event nodes and entity nodes in the KG are integrated through the constructed heterogeneous graph. Meanwhile, in the heterogeneous graph, the event nodes and entity nodes are connected through the event arguments type, and the event nodes are connected through the causal relationship. Finally, an information transfer method based on an attention network is designed, which is used for the relations between events, events and entities, and entities and entities, to integrate event information into KGE. Comprehensive experiments on the ACE2005 corpus and CEC2.0 dataset verify that the event KGE model we designed is efficient and stable in multiple downstream tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
He完成签到,获得积分10
12秒前
磊少完成签到 ,获得积分10
15秒前
天雨流芳完成签到,获得积分20
15秒前
小奋青完成签到 ,获得积分10
16秒前
rui完成签到 ,获得积分10
17秒前
天雨流芳发布了新的文献求助10
19秒前
Chen完成签到 ,获得积分10
19秒前
20秒前
Estella完成签到,获得积分10
22秒前
24秒前
赘婿应助科研通管家采纳,获得10
25秒前
所所应助科研通管家采纳,获得20
25秒前
26秒前
26秒前
Luna爱科研完成签到 ,获得积分10
28秒前
Paris完成签到 ,获得积分10
31秒前
31秒前
静然发布了新的文献求助10
33秒前
qqJing完成签到,获得积分10
37秒前
学不会物理的男孩完成签到,获得积分10
38秒前
hello2001完成签到 ,获得积分10
39秒前
dada完成签到 ,获得积分10
44秒前
赘婿应助Newky采纳,获得10
48秒前
静然完成签到,获得积分10
50秒前
Fn完成签到 ,获得积分10
52秒前
丘比特应助666采纳,获得10
1分钟前
1分钟前
yaoyh_gc发布了新的文献求助10
1分钟前
1分钟前
LYL完成签到,获得积分10
1分钟前
1分钟前
1分钟前
渣兔发布了新的文献求助30
1分钟前
yaoyh_gc完成签到,获得积分10
1分钟前
1分钟前
kid1412完成签到 ,获得积分10
1分钟前
万能图书馆应助晨曦微露采纳,获得10
1分钟前
木语完成签到 ,获得积分20
1分钟前
Newky发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795475
求助须知:如何正确求助?哪些是违规求助? 3340512
关于积分的说明 10300384
捐赠科研通 3057032
什么是DOI,文献DOI怎么找? 1677368
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491