Exploring and predicting China’s consumer price index with its influence factors via big data analysis

计量经济学 消费价格指数(南非) 膨胀(宇宙学) 统计 物价指数 索引(排版) 回归分析 计算机科学 经济 数学 货币政策 宏观经济学 理论物理学 物理 万维网
作者
Qian Cui,Shuai Rong,Zhang Fei,Xiaodan Wang
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:46 (1): 891-901 被引量:2
标识
DOI:10.3233/jifs-234102
摘要

The consumer price index (CPI) is an important indicator to measure inflation or deflation, which is closely related to residents’ lives and affects the direction of national macroeconomic policy formulation. It is a common method to discuss CPI from the perspective of economic analysis, but the statistical principles and influencing factors related to CPI are often ignored. Thus, the impact of different types of CPI on China’s overall CPI was discussed from three aspects: statistical simulation, machine learning prediction and correlation analysis of various types of influencing factors and CPI in this study. Realistic data from the National Bureau of Statistics from 2010 to 2022 were selected as the analysis object. The Statistical analysis showed that in 2015 and 2020, CPI had a fluctuating trend due to the impact of education and transportation. Four types of statistical models including Gauss, Lorentz, Extreme and Pearson were compared. It was determined that the R2 fitted by Extreme model was higher (R2 = 0.81), and the optimal year of simulation was around 2019, which was close to reality. To accurately predict the CPI, the results of Support Vector Machine, Regression decision tree and Gaussian regression (GPR) were compared, and the GPR was determined to be the optimal model (R2 = 0.99). In addition, Spearman matrix analyzed the correlation between CPI and various influencing factors. Herein, this study provided a new method to determine and predict the changing trend of CPI by using big data analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰魂应助通通通采纳,获得10
刚刚
Alex发布了新的文献求助10
刚刚
1秒前
2秒前
甜美三娘完成签到,获得积分10
2秒前
wander完成签到 ,获得积分10
4秒前
4秒前
正直夜梅完成签到 ,获得积分10
9秒前
11秒前
奥特曼发布了新的文献求助40
12秒前
冰魂应助安澜采纳,获得20
13秒前
17秒前
吃醋发布了新的文献求助20
20秒前
20秒前
21秒前
科研通AI5应助啦啦啦采纳,获得10
23秒前
23秒前
谢富杰发布了新的文献求助10
25秒前
asymmetric糖关注了科研通微信公众号
25秒前
Erueka发布了新的文献求助10
26秒前
扒开皮皮发布了新的文献求助10
29秒前
CodeCraft应助what采纳,获得10
29秒前
30秒前
Lucas应助谢富杰采纳,获得10
30秒前
31秒前
纪鹏飞发布了新的文献求助10
34秒前
35秒前
动漫大师发布了新的文献求助10
36秒前
37秒前
asymmetric糖发布了新的文献求助10
37秒前
37秒前
是猪猪呀完成签到,获得积分10
38秒前
认真的adai完成签到,获得积分20
40秒前
yanmh完成签到,获得积分10
41秒前
司阔林发布了新的文献求助10
41秒前
顺心香菇应助科研通管家采纳,获得50
41秒前
FashionBoy应助科研通管家采纳,获得10
41秒前
天天快乐应助科研通管家采纳,获得10
42秒前
顾矜应助科研通管家采纳,获得10
42秒前
1234应助科研通管家采纳,获得10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323349
关于积分的说明 10214106
捐赠科研通 3038590
什么是DOI,文献DOI怎么找? 1667553
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290