亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semi-supervised Classification on Data Streams with Recurring Concept Drift Based on Conformal Prediction

概念漂移 分类器(UML) 计算机科学 数据流 块(置换群论) 人工智能 模式识别(心理学) 标记数据 数据流挖掘 共形映射 数据挖掘 数学 几何学 电信 数学分析
作者
Songde Ma,Wei Kang,Yun Xue,Yonggang Wen
出处
期刊:Communications in computer and information science 卷期号:: 355-366
标识
DOI:10.1007/978-981-99-8184-7_27
摘要

In this article, we consider the problem of semi-supervised data stream classification. The main difficulties of data stream semi-supervised classification include how to jointly utilize labeled and unlabeled samples to adress concept drift detection and how to use unlabeled to update trained classifier. Existing algorithms like the CPSSDS method constantly retrain a new classifier when concept drift is detected, it is very consuming and wasteful. In this paper, the algorithm of data stream semi-supervised classification with recurring concept drift named as CPSSDS-R is proposed. First, the labeled samples in the first data block are used to initialize a classifier, which is added into a pool and actived for classification. While a new data block arrives, concept drift is detected by computing conformal prediction results. If no concept drift is detected, the pseudo-labeled samples in the previous data block are added with the labeled samples in the current data block to incrementally train the active classifier. If a new concept is detected, a new classifier is trained on the labeled samples of the current data block and added into the pool and actived for classification, else if a recurring concept is detected, the pseudo-labeled samples and labeled samples in the current data block are used to incrementally update the classifier corresponding to the recurring concept in the pool and actived for classification. The proposed algorithm is tested on multiple synthetic and real datasets, and its cumulative accuracy and block accuracy at different labeling ratios demonstrate the effectiveness of the proposed algorithm. The code for the proposed algorithm is available on https://gitee.com/ymw12345/cpssds-r .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
伯云完成签到,获得积分10
3秒前
远山完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
8秒前
lw完成签到,获得积分10
8秒前
坦率珍发布了新的文献求助10
10秒前
lw发布了新的文献求助30
11秒前
15秒前
大力鹤完成签到 ,获得积分10
22秒前
科研通AI6应助lw采纳,获得10
29秒前
柯语雪发布了新的文献求助20
32秒前
48秒前
NOTHING完成签到 ,获得积分10
55秒前
1分钟前
snail完成签到,获得积分10
1分钟前
Hayat应助科研通管家采纳,获得30
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
背后的山柏关注了科研通微信公众号
1分钟前
xxxpeacey完成签到,获得积分10
1分钟前
1分钟前
菜菜完成签到 ,获得积分10
1分钟前
二狗完成签到 ,获得积分10
1分钟前
1分钟前
吞吞完成签到 ,获得积分10
1分钟前
酷波er应助sci一点就通采纳,获得10
1分钟前
joshar发布了新的文献求助30
1分钟前
故意的鞋垫完成签到 ,获得积分10
1分钟前
1分钟前
英姑应助张鑫采纳,获得10
1分钟前
2分钟前
2分钟前
shushu完成签到 ,获得积分10
2分钟前
张鑫发布了新的文献求助10
2分钟前
陈子宇完成签到 ,获得积分10
2分钟前
OKC发布了新的文献求助10
2分钟前
2分钟前
林志迎发布了新的文献求助10
2分钟前
OKC完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515678
求助须知:如何正确求助?哪些是违规求助? 4609007
关于积分的说明 14514286
捐赠科研通 4545490
什么是DOI,文献DOI怎么找? 2490584
邀请新用户注册赠送积分活动 1472514
关于科研通互助平台的介绍 1444216