Enhanced short-term load forecasting with hybrid machine learning models: CatBoost and XGBoost approaches

计算机科学 变量(数学) 机器学习 期限(时间) 钥匙(锁) 人工智能 电力负荷 数据挖掘 功率(物理) 数学 工程类 物理 量子力学 数学分析 计算机安全 电气工程
作者
Lijie Zhang,Dominik Jánošík
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:241: 122686-122686 被引量:40
标识
DOI:10.1016/j.eswa.2023.122686
摘要

The focus of this paper is to improve short-term load forecasting for electric power. To achieve this goal, the study explores and evaluates hybrid models, specifically using the CatBoost and XGBoost algorithms, which are optimized with different optimizers. The study incorporates hourly electricity load data and also includes temperature data to enhance the precision of the forecasting models. Statistical metrics are then used to assess the performance of these models. The study evaluates the performance of the hybrid models on both training and testing datasets. It finds that the CatBoost-Arithmetic Optimization Algorithm hybrid model outperforms the other models in the training dataset. However, in the testing dataset, the XGBoost- Arithmetic Optimization Algorithm hybrid model demonstrates superior performance compared to the CatBoost models. The study conducts an importance and sensitivity analysis to understand which variables have the most significant impact on the target variable, which is likely electricity load. The results of this analysis reveal that temperature is the most influential variable affecting the target variable. Additionally, the month variable is identified as having a notable impact on load forecasting. These findings suggest that employing hybrid models, particularly those optimized with appropriate algorithms, can significantly improve the accuracy of short-term load forecasting. Moreover, the study highlights the importance of incorporating temperature data into these models, as temperature is a key driver of electricity load patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
玫莓发布了新的文献求助20
2秒前
2秒前
小王同学发布了新的文献求助10
4秒前
飞快的厉发布了新的文献求助10
6秒前
刻苦的紫霜完成签到,获得积分20
6秒前
峡星牙完成签到,获得积分10
7秒前
是个憨憨发布了新的文献求助10
8秒前
Selenaxue发布了新的文献求助10
9秒前
10秒前
科研通AI5应助标致惋庭采纳,获得10
10秒前
12秒前
罗实完成签到 ,获得积分10
13秒前
然463完成签到 ,获得积分10
15秒前
baihanjunluo完成签到,获得积分10
15秒前
15秒前
MITNO1发布了新的文献求助10
16秒前
16秒前
酷波er应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得10
17秒前
大个应助洛洛采纳,获得10
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
HMONEY应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
Cherish应助科研通管家采纳,获得10
17秒前
眼睛大的书易完成签到,获得积分10
18秒前
SciGPT应助飞快的厉采纳,获得10
18秒前
19秒前
ywl完成签到 ,获得积分10
20秒前
xx发布了新的文献求助10
21秒前
24秒前
imemorizedpi发布了新的文献求助10
25秒前
Selenaxue完成签到,获得积分10
26秒前
29秒前
29秒前
开天神秀完成签到,获得积分10
29秒前
31秒前
32秒前
佳佳发布了新的文献求助20
34秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799143
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321756
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680172
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445