Eff-3DPSeg: 3D Organ-Level Plant Shoot Segmentation Using Annotation-Efficient Deep Learning

分割 人工智能 计算机科学 点云 注释 深度学习 模式识别(心理学) 监督学习 机器学习 人工神经网络
作者
Liyi Luo,Xintong Jiang,Yang Yu,Eugene Roy Antony Samy,Mark Lefsrud,Valerio Hoyos‐Villegas,Shangpeng Sun
出处
期刊:Plant phenomics [American Association for the Advancement of Science]
卷期号:5 被引量:15
标识
DOI:10.34133/plantphenomics.0080
摘要

Reliable and automated 3-dimensional (3D) plant shoot segmentation is a core prerequisite for the extraction of plant phenotypic traits at the organ level. Combining deep learning and point clouds can provide effective ways to address the challenge. However, fully supervised deep learning methods require datasets to be point-wise annotated, which is extremely expensive and time-consuming. In our work, we proposed a novel weakly supervised framework, Eff-3DPSeg, for 3D plant shoot segmentation. First, high-resolution point clouds of soybean were reconstructed using a low-cost photogrammetry system, and the Meshlab-based Plant Annotator was developed for plant point cloud annotation. Second, a weakly supervised deep learning method was proposed for plant organ segmentation. The method contained (a) pretraining a self-supervised network using Viewpoint Bottleneck loss to learn meaningful intrinsic structure representation from the raw point clouds and (b) fine-tuning the pretrained model with about only 0.5% points being annotated to implement plant organ segmentation. After, 3 phenotypic traits (stem diameter, leaf width, and leaf length) were extracted. To test the generality of the proposed method, the public dataset Pheno4D was included in this study. Experimental results showed that the weakly supervised network obtained similar segmentation performance compared with the fully supervised setting. Our method achieved 95.1%, 96.6%, 95.8%, and 92.2% in the precision, recall, F1 score, and mIoU for stem-leaf segmentation for the soybean dataset and 53%, 62.8%, and 70.3% in the AP, AP@25, and AP@50 for leaf instance segmentation for the Pheno4D dataset. This study provides an effective way for characterizing 3D plant architecture, which will become useful for plant breeders to enhance selection processes. The trained networks are available at https://github.com/jieyi-one/EFF-3DPSEG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
齐多达完成签到 ,获得积分10
刚刚
852应助科研疯采纳,获得10
1秒前
hugeyoung完成签到,获得积分10
1秒前
大鹏应助狂野白梅采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
小海应助binbinbin采纳,获得10
6秒前
7秒前
Taylor完成签到,获得积分0
7秒前
Hello应助可达采纳,获得10
8秒前
11秒前
12秒前
13秒前
14秒前
科研疯发布了新的文献求助10
16秒前
季夏十六完成签到,获得积分10
16秒前
嘻嘻完成签到,获得积分10
18秒前
晶猪噜噜发布了新的文献求助10
18秒前
想飞的熊发布了新的文献求助10
19秒前
20秒前
21秒前
22秒前
刘刘发布了新的文献求助30
22秒前
屿风完成签到 ,获得积分10
23秒前
23秒前
adeno发布了新的文献求助10
25秒前
称心网络发布了新的文献求助10
27秒前
QiDW发布了新的文献求助10
27秒前
Maomao发布了新的文献求助10
27秒前
28秒前
28秒前
EVAN完成签到,获得积分10
29秒前
科研通AI5应助天真的青采纳,获得10
30秒前
CipherSage应助幸福的初晴采纳,获得30
32秒前
阳仔完成签到,获得积分10
32秒前
没有昵称发布了新的文献求助10
33秒前
激流勇进wb完成签到 ,获得积分10
34秒前
WY发布了新的文献求助20
35秒前
平常的毛豆应助重要问芙brk采纳,获得200
36秒前
Nik- KC完成签到 ,获得积分10
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784064
求助须知:如何正确求助?哪些是违规求助? 3329170
关于积分的说明 10240457
捐赠科研通 3044703
什么是DOI,文献DOI怎么找? 1671219
邀请新用户注册赠送积分活动 800189
科研通“疑难数据库(出版商)”最低求助积分说明 759213