精神分裂症(面向对象编程)
模式
人工智能
功能磁共振成像
脑电图
深度学习
计算机科学
相关性
心理学
扣带回前部
机器学习
认知心理学
神经科学
模式识别(心理学)
认知
精神科
数学
社会科学
几何学
社会学
作者
Caroline L. Alves,Thaise G. L. de O. Toutain,Joel Augusto Moura Porto,Patrícia de Carvalho Aguiar,Eduardo Pondé de Sena,Francisco A. Rodrigues,Aruane M. Pineda,Christiane Thielemann
标识
DOI:10.1088/1741-2552/acf734
摘要
(SCZ) is a severe mental disorder associated with persistent or recurrent psychosis, hallucinations, delusions, and thought disorders that affect approximately 26 million people worldwide, according to the World Health Organization. Several studies encompass machine learning (ML) and deep learning algorithms to automate the diagnosis of this mental disorder. Others study SCZ brain networks to get new insights into the dynamics of information processing in individuals suffering from the condition. In this paper, we offer a rigorous approach with ML and deep learning techniques for evaluating connectivity matrices and measures of complex networks to establish an automated diagnosis and comprehend the topology and dynamics of brain networks in SCZ individuals.
科研通智能强力驱动
Strongly Powered by AbleSci AI