Molecular-subtype guided automatic invasive breast cancer grading using dynamic contrast-enhanced MRI

联营 分级(工程) 人工智能 模式识别(心理学) 计算机科学 乳腺癌 接收机工作特性 卷积神经网络 相关性 深度学习 医学 数学 癌症 内科学 机器学习 生物 生态学 几何学
作者
Ruizhi Sun,Wei Long,Xuewen Hou,Yang Chen,Yaoqin Xie,Shengdong Nie
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:242: 107804-107804
标识
DOI:10.1016/j.cmpb.2023.107804
摘要

Histological grade and molecular subtype have presented valuable references in assigning personalized or precision medicine as the significant prognostic indicators representing biological behaviors of invasive breast cancer (IBC). To evaluate a two-stage deep learning framework for IBC grading that incorporates with molecular-subtype (MS) information using DCE-MRI.In Stage I, an innovative neural network called IOS2-DA is developed, which includes a dense atrous-spatial pyramid pooling block with a pooling layer (DA) and inception-octconved blocks with double kernel squeeze-and-excitations (IOS2). This method focuses on the imaging manifestation of IBC grades and performs preliminary prediction using a novel class F1-score loss function. In Stage II, a MS attention branch is introduced to fine-tune the integrated deep vectors from IOS2-DA via Kullback-Leibler divergence. The MS-guided information is weighted with preliminary results to obtain classification values, which are analyzed by ensemble learning for tumor grade prediction on three MRI post-contrast series. Objective assessment is quantitatively evaluated by receiver operating characteristic curve analysis. DeLong test is applied to measure statistical significance (P < 0.05).The molecular-subtype guided IOS2-DA performs significantly better than the single IOS2-DA in terms of accuracy (0.927), precision (0.942), AUC (0.927, 95% CI: [0.908, 0.946]), and F1-score (0.930). The gradient-weighted class activation maps show that the feature representations extracted from IOS2-DA are consistent with tumor areas.IOS2-DA elucidates its potential in non-invasive tumor grade prediction. With respect to the correlation between MS and histological grade, it exhibits remarkable clinical prospects in the application of relevant clinical biomarkers to enhance the diagnostic effectiveness of IBC grading. Therefore, DCE-MRI tends to be a feasible imaging modality for the thorough preoperative assessment of breast biological behavior and carcinoma prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小飞飞完成签到,获得积分10
7秒前
Eric完成签到,获得积分10
8秒前
9秒前
LOVE0077完成签到,获得积分10
10秒前
11秒前
精英刺客完成签到 ,获得积分10
11秒前
面包小狗发布了新的文献求助10
12秒前
WittingGU完成签到,获得积分0
12秒前
刘春亚完成签到,获得积分10
12秒前
繁荣的夏岚完成签到 ,获得积分10
13秒前
tf完成签到,获得积分10
14秒前
上的工人进场完成签到,获得积分10
15秒前
15秒前
肉胖胖肉完成签到,获得积分10
15秒前
优美从菡发布了新的文献求助10
16秒前
不期而遇完成签到 ,获得积分10
16秒前
科研小白完成签到,获得积分10
18秒前
21秒前
22秒前
长生的落叶完成签到,获得积分10
23秒前
long发布了新的文献求助10
23秒前
xyliu发布了新的文献求助10
24秒前
tingtingzhang完成签到 ,获得积分10
24秒前
wanci应助tf采纳,获得10
24秒前
风和日丽完成签到,获得积分10
25秒前
27秒前
27秒前
小马甲应助柳尖尖采纳,获得10
27秒前
丹dan完成签到,获得积分10
30秒前
科研通AI5应助刘春亚采纳,获得10
31秒前
Deerlu完成签到,获得积分10
31秒前
mlzmlz完成签到,获得积分0
31秒前
越幸运完成签到 ,获得积分10
31秒前
小马甲应助xyliu采纳,获得10
31秒前
lllllnnnnj发布了新的文献求助10
32秒前
Orange应助xz采纳,获得10
33秒前
共享精神应助21采纳,获得10
34秒前
zheng2001完成签到,获得积分10
34秒前
34秒前
彩色黑米完成签到 ,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781110
求助须知:如何正确求助?哪些是违规求助? 3326526
关于积分的说明 10227602
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669552
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734