已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Encapsulation of few-layered MoS2 on electrochemical-treated BiVO4 nanoarray photoanode: Simultaneously improved charge separation and hole extraction towards efficient photoelectrochemical water splitting

光电流 钒酸铋 材料科学 异质结 分解水 电化学 载流子 纳米技术 光催化 光电子学 化学工程 能量转换效率 电极 催化作用 化学 生物化学 物理化学 工程类
作者
Zhiyuan Peng,Yilu Su,Imane Ennaji,Amir Khojastehnezhad,Mohamed Siaj
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:477: 147082-147082 被引量:12
标识
DOI:10.1016/j.cej.2023.147082
摘要

Bismuth vanadate (BiVO4) photoanode shows great potential for photoelectrochemical (PEC) water splitting but still suffers from the sluggish surface reaction kinetic and high charge loss. Further strengthening the intrinsic charge transport for the improvement of solar-to-hydrogen conversion becomes the top priority. Herein, an innovative highly-oriented E-BiVO4/MoS2 heterojunction photoanode is rationally designed and fabricated via directly encapsulating few-layered MoS2 nanosheets on electrochemical-treated BiVO4 (E-BiVO4) nanopyramid arrays. Systematic studies reveal that the electrochemical reduction process can create oxygen vacancies on BiVO4 lattice, thereby increasing the overall carrier concentration, and boosting the bulk and surface charge separation efficiencies. Meanwhile, the introduction of MoS2 as a heterojunction helps build the unidirectional charge transfer channels for further facilitated surface hole extraction and oxidation kinetics, synergistically devoting to the significantly enhanced PEC activity and photostability. As a result, the optimized E-BiVO4/MoS2 photoanode exhibits the highest photocurrent density of 2.11 mA/cm2 at 1.23 VRHE and incident photon-to-electron conversion efficiency (IPCE) of 40.6 %, which are approximately 4.6 and 4.9 times higher than the pristine BiVO4. The present work demonstrates a feasible collaborative strategy to develop photoanodes with simultaneously improved charge separation and hole transport for efficient PEC water splitting application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
元元应助查丽采纳,获得10
刚刚
无辜小鸭子完成签到,获得积分20
1秒前
fancy完成签到 ,获得积分10
1秒前
科研通AI5应助lstj6675采纳,获得10
4秒前
6秒前
共享精神应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
oboy应助科研通管家采纳,获得10
9秒前
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
宝宝时代发布了新的文献求助10
11秒前
12秒前
和谐冰菱完成签到 ,获得积分10
13秒前
Doc_Xu完成签到,获得积分10
14秒前
独特靖巧发布了新的文献求助10
16秒前
加绒完成签到,获得积分10
20秒前
22秒前
23秒前
667788发布了新的文献求助10
25秒前
28秒前
28秒前
Lingyu完成签到 ,获得积分10
29秒前
29秒前
小二郎应助qq采纳,获得10
33秒前
哇达西发布了新的文献求助10
34秒前
aman发布了新的文献求助10
34秒前
dddddd发布了新的文献求助10
34秒前
SYLH应助细腻的金毛采纳,获得10
35秒前
潇洒的盼望完成签到 ,获得积分10
36秒前
39秒前
orixero应助幸运幸福采纳,获得10
41秒前
黑球发布了新的文献求助10
42秒前
酷波er应助充盈缺损采纳,获得10
46秒前
chenjzhuc完成签到,获得积分10
46秒前
朴素乐菱发布了新的文献求助10
49秒前
50秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798329
求助须知:如何正确求助?哪些是违规求助? 3343717
关于积分的说明 10317435
捐赠科研通 3060495
什么是DOI,文献DOI怎么找? 1679566
邀请新用户注册赠送积分活动 806710
科研通“疑难数据库(出版商)”最低求助积分说明 763295