A GAN-Based Augmentation Scheme for SAR Deceptive Jamming Templates with Shadows

计算机科学 模板 人工智能 相似性(几何) 影子(心理学) 散斑噪声 样品(材料) 干扰 计算机视觉 合成孔径雷达 模式识别(心理学) 图像(数学) 程序设计语言 物理 热力学 色谱法 心理治疗师 心理学 化学
作者
Shinan Lang,Guiqiang Li,Yi Liu,Wei Lü,Qunying Zhang,Kun Chao
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (19): 4756-4756
标识
DOI:10.3390/rs15194756
摘要

To realize fast and effective synthetic aperture radar (SAR) deception jamming, a high-quality SAR deception jamming template library can be generated by performing sample augmentation on SAR deception jamming templates. However, the current sample augmentation schemes of SAR deception jamming templates face certain problems. First, the authenticity of the templates is low due to the lack of speckle noise. Second, the generated templates have a low similarity to the target and shadow areas of the input templates. To solve these problems, this study proposed a sample augmentation scheme based on generative adversarial networks, which can generate a high-quality library of SAR deception jamming templates with shadows. The proposed scheme solved the two aforementioned problems from the following aspects. First, the influence of the speckle noise was considered in the network to avoid the problem of reduced authenticity in the generated images. Second, a channel attention mechanism module was used to improve the network’s learning ability of the shadow features, which improved the similarity between the generated template and the shadow area in the input template. Finally, the single generative adversarial network (SinGAN) scheme, which is a generative adversarial network capable of image sample augmentation for a single SAR image, and the proposed scheme were compared regarding the equivalent number of looks and the structural similarity between the target and shadow in the sample augmentation results. The comparison results demonstrated that, compared to the templates generated by the SinGAN scheme, those generated by the proposed scheme had targets and shadow features similar to those of the original image and could incorporate speckle noise characteristics, resulting in a higher authenticity, which helps to achieve fast and effective SAR deception jamming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然砖家发布了新的文献求助10
刚刚
刚刚
H2CO3发布了新的文献求助10
1秒前
淡定小翠完成签到,获得积分20
1秒前
yueee发布了新的文献求助10
2秒前
领导范儿应助王一一一一采纳,获得10
2秒前
yu发布了新的文献求助30
2秒前
斯文败类应助末123456采纳,获得10
2秒前
花花关注了科研通微信公众号
4秒前
jungwoo123发布了新的文献求助10
5秒前
20231125发布了新的文献求助30
5秒前
6秒前
7秒前
7秒前
MiManchi完成签到,获得积分10
7秒前
8秒前
jungwoo123完成签到,获得积分10
9秒前
邓佳鑫Alan应助keke123采纳,获得10
9秒前
LijinJiang发布了新的文献求助10
10秒前
禹代秋发布了新的文献求助10
10秒前
nenoaowu发布了新的文献求助10
11秒前
大力从云完成签到 ,获得积分10
11秒前
科研通AI6应助He_采纳,获得10
12秒前
天天快乐应助yueee采纳,获得10
12秒前
静悄悄发布了新的文献求助10
12秒前
lqq的一家之主完成签到,获得积分10
12秒前
XY发布了新的文献求助10
13秒前
14秒前
海峰荣完成签到,获得积分10
16秒前
16秒前
朱剑洪完成签到,获得积分10
17秒前
呆萌芙蓉发布了新的文献求助10
19秒前
19秒前
20秒前
liu45kf发布了新的文献求助10
20秒前
ZYD发布了新的文献求助10
21秒前
22秒前
23秒前
23秒前
Winnie发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5417405
求助须知:如何正确求助?哪些是违规求助? 4533298
关于积分的说明 14139229
捐赠科研通 4449332
什么是DOI,文献DOI怎么找? 2440747
邀请新用户注册赠送积分活动 1432514
关于科研通互助平台的介绍 1409910