Red-tailed hawk algorithm for numerical optimization and real-world problems

算法 稳健性(进化) 水准点(测量) 计算机科学 数学优化 优化算法 趋同(经济学) 元启发式 进化算法 数学 地理 地图学 生物 生物化学 经济增长 经济 基因
作者
Seydali Ferahtia,Azeddine Houari,Hegazy Rezk,Ali Djerioui,Mohamed Machmoum,Saad Motahhir,Mourad Aït‐Ahmed
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:57
标识
DOI:10.1038/s41598-023-38778-3
摘要

This study suggests a new nature-inspired metaheuristic optimization algorithm called the red-tailed hawk algorithm (RTH). As a predator, the red-tailed hawk has a hunting strategy from detecting the prey until the swoop stage. There are three stages during the hunting process. In the high soaring stage, the red-tailed hawk explores the search space and determines the area with the prey location. In the low soaring stage, the red-tailed moves inside the selected area around the prey to choose the best position for the hunt. Then, the red-tailed swings and hits its target in the stooping and swooping stages. The proposed algorithm mimics the prey-hunting method of the red-tailed hawk for solving real-world optimization problems. The performance of the proposed RTH algorithm has been evaluated on three classes of problems. The first class includes three specific kinds of optimization problems: 22 standard benchmark functions, including unimodal, multimodal, and fixed-dimensional multimodal functions, IEEE Congress on Evolutionary Computation 2020 (CEC2020), and IEEE CEC2022. The proposed algorithm is compared with eight recent algorithms to confirm its contribution to solving these problems. The considered algorithms are Farmland Fertility Optimizer (FO), African Vultures Optimization Algorithm (AVOA), Mountain Gazelle Optimizer (MGO), Gorilla Troops Optimizer (GTO), COOT algorithm, Hunger Games Search (HGS), Aquila Optimizer (AO), and Harris Hawks optimization (HHO). The results are compared regarding the accuracy, robustness, and convergence speed. The second class includes seven real-world engineering problems that will be considered to investigate the RTH performance compared to other published results profoundly. Finally, the proton exchange membrane fuel cell (PEMFC) extraction parameters will be performed to evaluate the algorithm with a complex problem. The proposed algorithm will be compared with several published papers to approve its performance. The ultimate results for each class confirm the ability of the proposed RTH algorithm to provide higher performance for most cases. For the first class, the RTH mostly got the optimal solutions for most functions with faster convergence speed. The RTH provided better performance for the second and third classes when resolving the real word engineering problems or extracting the PEMFC parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助mylaodao采纳,获得10
5秒前
JamesPei应助NEO采纳,获得10
5秒前
善学以致用应助小蚊子采纳,获得10
5秒前
淡定硬币完成签到 ,获得积分10
6秒前
wyl完成签到,获得积分10
7秒前
无语的电源完成签到,获得积分10
8秒前
苏苏苏发布了新的文献求助150
9秒前
小王同志完成签到,获得积分10
10秒前
11秒前
11秒前
乐仔发布了新的文献求助10
11秒前
11秒前
13秒前
14秒前
三愿完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
15秒前
16秒前
肥肥完成签到 ,获得积分10
16秒前
18秒前
小小阿杰发布了新的文献求助10
18秒前
小蚊子发布了新的文献求助10
18秒前
lalal发布了新的文献求助10
19秒前
卜乌完成签到,获得积分10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
DH发布了新的文献求助10
19秒前
asdfqwer应助科研通管家采纳,获得10
19秒前
iNk应助科研通管家采纳,获得10
20秒前
asdfqwer应助科研通管家采纳,获得10
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
微笑绿旋应助科研通管家采纳,获得30
20秒前
嘿嘿应助科研通管家采纳,获得10
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得50
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
asdfqwer应助科研通管家采纳,获得10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
打打应助科研通管家采纳,获得10
20秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4120710
求助须知:如何正确求助?哪些是违规求助? 3658901
关于积分的说明 11582302
捐赠科研通 3360465
什么是DOI,文献DOI怎么找? 1846381
邀请新用户注册赠送积分活动 911179
科研通“疑难数据库(出版商)”最低求助积分说明 827352