Recent updates in kidney risk prediction modeling: novel approaches and earlier outcomes

概化理论 肾脏疾病 预测建模 计算机科学 风险分析(工程) 重症监护医学 人口 医学 风险评估 机器学习 内科学 心理学 计算机安全 环境卫生 发展心理学
作者
Gregory L. Hundemer,Manish M. Sood,Mark Canney
出处
期刊:Current Opinion in Nephrology and Hypertension [Lippincott Williams & Wilkins]
卷期号:32 (3): 257-262 被引量:1
标识
DOI:10.1097/mnh.0000000000000879
摘要

Purpose of review Recent years have witnessed the development of kidney risk prediction models which diverge from traditional model designs to incorporate novel approaches along with a focus on earlier outcomes. This review summarizes these recent advances, evaluates their pros and cons, and discusses their potential implications. Recent findings Several kidney risk prediction models have recently been developed utilizing machine learning rather than traditional Cox regression. These models have demonstrated accurate prediction of kidney disease progression, often beyond that of traditional models, in both internal and external validation. On the opposite end of the spectrum, a simplified kidney risk prediction model was recently developed which minimized the need for laboratory data and instead relies primarily on self-reported data. While internal testing showed good overall predictive performance, the generalizability of this model remains uncertain. Finally, there is a growing trend toward prediction of earlier kidney outcomes (e.g., incident chronic kidney disease [CKD]) and away from a sole focus on kidney failure. Summary Newer approaches and outcomes now being incorporated into kidney risk prediction modeling may enhance prediction and benefit a broader patient population. However, future work should address how best to implement these models into practice and assess their long-term clinical effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jin发布了新的文献求助10
1秒前
Genius发布了新的文献求助10
3秒前
研友_Ljqal8完成签到,获得积分10
4秒前
cetomacrogol发布了新的文献求助10
4秒前
香蕉觅云应助酷炫怀莲采纳,获得10
5秒前
Jsl完成签到,获得积分10
5秒前
黄浦江发布了新的文献求助10
6秒前
6秒前
CodeCraft应助乌梅不乌采纳,获得10
7秒前
科研通AI5应助llg采纳,获得10
8秒前
许甜甜鸭应助沐星采纳,获得10
8秒前
8秒前
8秒前
娜娜子完成签到 ,获得积分10
9秒前
周周发布了新的文献求助10
11秒前
lovesxj941完成签到,获得积分10
11秒前
龙龙ff11_发布了新的文献求助10
12秒前
哈哈完成签到,获得积分10
13秒前
13秒前
从容芮应助赫连人杰采纳,获得50
13秒前
luo发布了新的文献求助10
14秒前
4869完成签到 ,获得积分10
15秒前
16秒前
醉熏的似狮完成签到,获得积分10
16秒前
黄浦江完成签到,获得积分10
16秒前
会思考的狐狸完成签到 ,获得积分10
17秒前
羽墨空空发布了新的文献求助10
17秒前
CodeCraft应助LZZZ采纳,获得10
18秒前
南栀发布了新的文献求助10
18秒前
光亮青柏完成签到 ,获得积分10
19秒前
20秒前
雪白的豌豆完成签到,获得积分10
20秒前
jiw发布了新的文献求助10
20秒前
Inovation完成签到,获得积分10
21秒前
he完成签到 ,获得积分10
22秒前
22秒前
深情安青应助Genius采纳,获得10
22秒前
23秒前
111发布了新的文献求助30
25秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823348
求助须知:如何正确求助?哪些是违规求助? 3365778
关于积分的说明 10437415
捐赠科研通 3084906
什么是DOI,文献DOI怎么找? 1697037
邀请新用户注册赠送积分活动 816181
科研通“疑难数据库(出版商)”最低求助积分说明 769437