Investigation the role of bacteria in calcium oxalate kidney stone formation

草酸钙 肾结石 细菌 肾结石病 泌尿系统 化学 草酸盐 医学 生物 内科学 遗传学 有机化学
作者
Reyhaneh Nazarian,Kymora B. Scotland
出处
期刊:Biophysical Journal [Elsevier BV]
卷期号:122 (3): 24a-24a
标识
DOI:10.1016/j.bpj.2022.11.355
摘要

Kidney stone disease is a serious health concern, with a high incidence rate of approximately 10% among North Americans and a high economic burden on the medical system exceedingly over $5 billion per year. Approximately 80% of kidney stones are composed of calcium oxalate (CaOx). While there are options for medical and surgical management of kidney stone disease, unfortunately, so far, no treatment has been developed to treat the cause of CaOx stone formation effectively. Thus, the rate of recurrence is high.(Lotan Y 2007) Recently, emerging clinical studies suggested that bacteria may play a critical role in stone formation, although the mechanism is not adequately studied (An et al. 2021). This study aims to investigate the role of bacteria in CaOx kidney stone formation and propagation. We hypothesize that inside the urinary tract, bacteria mediate the biocrystallization of CaOx, leading to the formation and development of kidney stones. Here, we will in-vitro study CaOx bacterial-induced crystallization using our developed microfluidic kidney model and under a continuous flow of artificial urine to mimic the unique physiological microenvironment of the urinary tract. In this regard, we will manipulate, monitor, and analyze the number, size, and morphology of the formed CaOx crystals in the presence of bacteria and under various urinary conditions (e.g., flow rate, pH, and chemistry) using high-resolution live microscopic, imaging, and spectroscopic approaches. Furthermore, we will elucidate the dominant molecular mechanism underlying the formation and propagation of CaOx stones at the single-bacterium level with a focus on the effect of bacterial secretion and sensing appendages.Investigation of the interaction at single and multi-cell levels allows us to accurately capture early aspects of the biocrystallization capabilities of bacteria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
笑笑完成签到,获得积分20
2秒前
3秒前
4秒前
笑笑发布了新的文献求助10
5秒前
8秒前
imomoe完成签到,获得积分10
10秒前
11秒前
11秒前
乐乐应助greatsnow采纳,获得10
12秒前
asdf发布了新的文献求助10
13秒前
16秒前
内向绿竹发布了新的文献求助10
17秒前
17秒前
20秒前
吴可之发布了新的文献求助10
21秒前
风趣谷槐完成签到,获得积分10
21秒前
卷卷豆完成签到 ,获得积分10
22秒前
Zz发布了新的文献求助10
22秒前
顾矜应助Cherry采纳,获得10
24秒前
顺心牛排发布了新的文献求助10
26秒前
科研通AI2S应助内向绿竹采纳,获得10
28秒前
科研通AI5应助芷荷采纳,获得10
28秒前
领导范儿应助顺心牛排采纳,获得10
31秒前
冷傲迎梦发布了新的文献求助10
32秒前
小橙子完成签到 ,获得积分10
32秒前
33秒前
38秒前
38秒前
临诗发布了新的文献求助10
38秒前
Ms_Galaxea完成签到,获得积分10
41秒前
42秒前
柒柒完成签到,获得积分10
43秒前
科研通AI5应助我是楠个谁采纳,获得10
46秒前
xiaopan9083发布了新的文献求助10
48秒前
48秒前
Zz完成签到,获得积分10
50秒前
51秒前
三三四完成签到,获得积分10
52秒前
淡然靖柔发布了新的文献求助10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217445
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668060
邀请新用户注册赠送积分活动 798494
科研通“疑难数据库(出版商)”最低求助积分说明 758385