亚型
卷积神经网络
人工智能
无线电技术
计算机科学
随机森林
特征选择
模式识别(心理学)
深度学习
分类器(UML)
医学诊断
医学
放射科
机器学习
程序设计语言
作者
Yang Chen,Yunjiao He,Zhuoyun Jiang,Yuanzhong Xie,Shengdong Nie
摘要
Cardiogenic embolism (CE) and large-artery atherosclerosis embolism (LAA) are the two most common ischemic stroke (IS) subtypes.In order to assist doctors in the precise diagnosis and treatment of patients, this study proposed an IS subtyping method combining convolutional neural networks (CNN) and radiomics.Firstly, brain embolism regions were segmented from the computed tomography angiography (CTA) images, and radiomics features were extracted; Secondly, the extracted radiomics features were optimized with the L2 norm, and the feature selection was performed by combining random forest; then, the CNN Cap-UNet was built to extract the deep learning features of the last layer of the network; Finally, combining the selected radiomics features and deep learning features, 9 small-sample classifiers were trained respectively to build and select the optimal IS subtyping classification model.The experimental data include CTA images of 82 IS patients diagnosed and treated in Shanghai Sixth People's Hospital. The AUC value and accuracy of the optimal subtyping model based on the Adaboost classifier are 0.9018 and 0.8929, respectively.The experimental results show that the proposed method can effectively predict the subtype of IS and has potential to assist doctors in making timely and accurate diagnoses of IS patients.
科研通智能强力驱动
Strongly Powered by AbleSci AI