已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Transformers in medical imaging: A survey

人工智能 计算机科学 医学影像学 计算机视觉 医学物理学 模式识别(心理学) 医学
作者
Fahad Shamshad,Salman Khan,Syed Waqas Zamir,Muhammad Haris Khan,Munawar Hayat,Fahad Shahbaz Khan,Huazhu Fu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:88: 102802-102802 被引量:572
标识
DOI:10.1016/j.media.2023.102802
摘要

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as de facto operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, restoration, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at https://github.com/fahadshamshad/awesome-transformers-in-medical-imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨杨发布了新的文献求助10
刚刚
1秒前
风趣问雁完成签到 ,获得积分10
2秒前
priscilla发布了新的文献求助10
3秒前
4秒前
科研通AI5应助诚心幻柏采纳,获得10
4秒前
4秒前
4秒前
陈影完成签到,获得积分10
6秒前
yaonian发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
Persist6578完成签到 ,获得积分10
7秒前
mangguo发布了新的文献求助10
8秒前
9秒前
10秒前
一帆风顺发布了新的文献求助10
10秒前
小白菜完成签到,获得积分10
11秒前
Wonder罗发布了新的文献求助10
12秒前
鱼鱼完成签到,获得积分10
12秒前
Lucas应助科研通管家采纳,获得20
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
shuo0976应助科研通管家采纳,获得10
13秒前
善良的数据线完成签到,获得积分10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
Estrella应助科研通管家采纳,获得20
13秒前
赘婿应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得30
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
14秒前
鱼鱼发布了新的文献求助10
17秒前
18秒前
20秒前
Wonder罗完成签到,获得积分10
24秒前
隔壁小孩完成签到,获得积分10
24秒前
he发布了新的文献求助10
25秒前
高分求助中
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840547
求助须知:如何正确求助?哪些是违规求助? 3382618
关于积分的说明 10525193
捐赠科研通 3102191
什么是DOI,文献DOI怎么找? 1708723
邀请新用户注册赠送积分活动 822646
科研通“疑难数据库(出版商)”最低求助积分说明 773450