A fast general thermal simulation model based on Multi-Branch Physics-Informed deep operator neural network

解算器 人工神经网络 深度学习 热的 领域(数学) 物理 人工智能 计算机科学 机器学习 数学 气象学 纯数学 程序设计语言
作者
Zibo Lu,Yuanye Zhou,Yanbo Zhang,X Hu,Qiao Zhao,Xuyang Hu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (3) 被引量:3
标识
DOI:10.1063/5.0194245
摘要

Thermal simulation plays a crucial role in various fields, often involving complex partial differential equation (PDE) simulations for thermal optimization. To tackle this challenge, we have harnessed neural networks for thermal prediction, specifically employing deep neural networks as a universal solver for PDEs. This innovative approach has garnered significant attention in the scientific community. While Physics-Informed Neural Networks (PINNs) have been introduced for thermal prediction using deep neural networks, existing methods primarily focus on offering thermal simulations for predefined relevant parameters, such as heat sources, loads, boundaries, and initial conditions. However, any adjustments to these parameters typically require retraining or transfer learning, resulting in considerable additional work. To overcome this limitation, we integrated PINN methods with the DeepONet model, creating a novel model called PI-DeepONet for thermal simulation. This model takes both relevant parameters and coordinate points as simultaneous input functions, presenting a fresh computational perspective for thermal simulation. Based on the PaddlePaddle deep learning framework, our research demonstrates that after sufficient training, this model can reliably and rapidly predict parameter solutions. Importantly, it significantly surpasses traditional numerical solvers in terms of speed by several orders of magnitude, without requiring additional training. This groundbreaking research framework holds vast application potential and promises substantial advancements in the field of thermal simulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
热情平凡发布了新的文献求助10
2秒前
2秒前
過客发布了新的文献求助10
3秒前
4秒前
5秒前
清爽念烟发布了新的文献求助10
5秒前
5秒前
追寻飞松发布了新的文献求助10
6秒前
司空康完成签到,获得积分10
7秒前
pcf发布了新的文献求助10
7秒前
9秒前
yyy完成签到,获得积分10
10秒前
linliqing完成签到,获得积分10
10秒前
OuY发布了新的文献求助30
11秒前
pcf完成签到,获得积分10
13秒前
ZJZALLEN完成签到 ,获得积分10
14秒前
NexusExplorer应助热情平凡采纳,获得10
15秒前
三十三天完成签到,获得积分10
15秒前
DHW1703701完成签到,获得积分10
16秒前
Phoo完成签到 ,获得积分10
16秒前
霸气咖啡豆完成签到,获得积分10
16秒前
17秒前
Zero140发布了新的文献求助10
17秒前
17秒前
OuY完成签到,获得积分20
22秒前
23秒前
旺仔不甜完成签到,获得积分10
23秒前
浮云发布了新的文献求助10
24秒前
科研通AI5应助asdf采纳,获得10
26秒前
26秒前
Zero140完成签到,获得积分10
27秒前
27秒前
许熙发布了新的文献求助10
29秒前
哒哒哒完成签到,获得积分10
29秒前
29秒前
Jae完成签到 ,获得积分10
30秒前
George完成签到,获得积分10
30秒前
bodhi完成签到,获得积分10
30秒前
万能图书馆应助花凉采纳,获得10
30秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801574
求助须知:如何正确求助?哪些是违规求助? 3347398
关于积分的说明 10333273
捐赠科研通 3063591
什么是DOI,文献DOI怎么找? 1681904
邀请新用户注册赠送积分活动 807767
科研通“疑难数据库(出版商)”最低求助积分说明 763886