Robust deep learning from incomplete annotation for accurate lung nodule detection

计算机科学 假阳性悖论 杠杆(统计) 注释 人工智能 深度学习 一般化 标记数据 机器学习 结核(地质) 模式识别(心理学) 古生物学 生物 数学分析 数学
作者
Gao Ze-bin,Yuchen Guo,Guoxin Wang,Xiangru Chen,Cao Xiao,Chao Zhang,Shan An,Feng Xu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:173: 108361-108361
标识
DOI:10.1016/j.compbiomed.2024.108361
摘要

Deep learning plays a significant role in the detection of pulmonary nodules in low-dose computed tomography(LDCT) scans, contributing to the diagnosis and treatment of lung cancer. Nevertheless, its effectiveness often relies on the availability of extensive, meticulously annotated dataset. In this paper, we explore the utilization of an incompletely annotated dataset for pulmonary nodules detection and introduce the FULFIL (Forecasting Uncompleted Labels For Inexpensive Lung nodule detection) algorithm as an innovative approach. By instructing annotators to label only the nodules they are most confident about, without requiring complete coverage, we can substantially reduce annotation costs. Nevertheless, this approach results in an incompletely annotated dataset, which presents challenges when training deep learning models. Within the FULFIL algorithm, we employ Graph Convolution Network(GCN) to discover the relationships between annotated and unannotated nodules for self-adaptively completing the annotation. Meanwhile, a teacher-student framework is employed for self-adaptive learning using the completed annotation dataset. Furthermore, we have designed a Dual-Views loss to leverage different data perspectives, aiding the model in acquiring robust features and enhancing generalization. We carried out experiments using the LUng Nodule Analysis (LUNA) dataset, achieving a sensitivity of 0.574 at a False positives per scan(FPs/scan)of 0.125 with only 10% instance-level annotations for nodules. This performance outperformed comparative methods by 7.00%. Experimental comparisons were conducted to evaluate the performance of our model and human experts on test dataset. The results demonstrate that our model can achieve a comparable level of performance to that of human experts. The comprehensive experimental results demonstrate that FULFIL can effectively leverage an incomplete pulmonary nodule dataset to develop a robust deep learning model, making it a promising tool for assisting in lung nodule detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ste56完成签到,获得积分10
1秒前
司空靖琪发布了新的文献求助10
1秒前
yty发布了新的文献求助10
2秒前
5秒前
FashionBoy应助研友_ZAVod8采纳,获得10
6秒前
柯莱完成签到 ,获得积分10
6秒前
Lucas应助北木南采纳,获得10
6秒前
苏叶发布了新的文献求助10
7秒前
8秒前
欢呼宛秋发布了新的文献求助10
13秒前
Zarc完成签到,获得积分10
14秒前
14秒前
15秒前
大模型应助机智的慕儿采纳,获得10
15秒前
简墨完成签到,获得积分10
16秒前
负责凛发布了新的文献求助10
16秒前
科目三应助yty采纳,获得10
16秒前
18秒前
kawayifenm发布了新的文献求助10
22秒前
北木南发布了新的文献求助10
22秒前
24秒前
小蘑菇应助小麻花采纳,获得10
26秒前
28秒前
快乐的小康完成签到,获得积分10
29秒前
赘婿应助Sandy采纳,获得10
34秒前
kawayifenm完成签到,获得积分10
34秒前
Leah完成签到,获得积分10
35秒前
35秒前
38秒前
在水一方应助熬夜大王采纳,获得10
39秒前
隐形曼青应助胖大海采纳,获得10
39秒前
39秒前
哎呀呀发布了新的文献求助10
39秒前
40秒前
Ava应助多摩川的烟花少年采纳,获得10
44秒前
武小发布了新的文献求助50
44秒前
tinyliiyong发布了新的文献求助10
46秒前
46秒前
ZHH驳回了情怀应助
49秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906552
求助须知:如何正确求助?哪些是违规求助? 3452238
关于积分的说明 10868980
捐赠科研通 3177799
什么是DOI,文献DOI怎么找? 1755568
邀请新用户注册赠送积分活动 848878
科研通“疑难数据库(出版商)”最低求助积分说明 791330