双功能
分解水
光电化学
光电化学电池
材料科学
化学
无机化学
催化作用
电化学
物理化学
光催化
电极
生物化学
电解质
作者
Syeda Ammara Shabbir,I. S. Ali,Muhammad Haris,Hamid Latif,Aneeqa Sabah,Ali S. Alshomrany,Youssef Bakkour
出处
期刊:ACS omega
[American Chemical Society]
日期:2024-04-29
卷期号:9 (19): 21450-21458
被引量:12
标识
DOI:10.1021/acsomega.4c01677
摘要
This study explored the synergistic potential of photoelectrochemical water splitting through bifunctional Co3O4/g-C3N4 heterostructures. This novel approach merged solar panel technology with electrochemical cell technology, obviating the need for external voltage from batteries. Scanning electron microscopy and X-ray diffraction were utilized to confirm the surface morphology and crystal structure of fabricated nanocomposites; Co3O4, Co3O4/g-C3N4, and Co3O4/Cg-C3N4. The incorporation of carbon into g-C3N4 resulted in improved catalytic activity and charge transport properties during the visible light-driven hydrogen evolution reaction and oxygen evolution reaction. Optical properties were examined using UV–visible spectroscopy, revealing a maximum absorption edge at 650 nm corresponding to a band gap of 1.31 eV for Co3O4/Cg-C3N4 resulting in enhanced light absorption. Among the three fabricated electrodes, Co3O4/Cg-C3N4 exhibited a significantly lower overpotential of 30 mV and a minimum Tafel slope of 112 mV/dec This enhanced photoelectrochemical efficiency was found due to the established Z scheme heterojunction between Co3O4 and gC3N4. This heterojunction reduced the recombination of photogenerated electron–hole pairs and thus promoted charge separation by extending visible light absorption range chronoamperometric measurements confirmed the steady current flow over time under constant potential from the solar cell, and thus it provided the effective utilization of bifunctional Co3O4/g-C3N4 heterostructures for efficient solar-driven water splitting.
科研通智能强力驱动
Strongly Powered by AbleSci AI