已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cross-patch feature interactive net with edge refinement for retinal vessel segmentation

计算机科学 分割 人工智能 编码器 特征(语言学) 背景(考古学) 计算机视觉 深度学习 图像分割 过程(计算) 模式识别(心理学) 哲学 语言学 古生物学 生物 操作系统
作者
Ning Kang,Maofa Wang,Cheng Pang,Rushi Lan,Bingbing Li,Junlin Guan,Huadeng Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:174: 108443-108443 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108443
摘要

Retinal vessel segmentation based on deep learning is an important auxiliary method for assisting clinical doctors in diagnosing retinal diseases. However, existing methods often produce mis-segmentation when dealing with low contrast images and thin blood vessels, which affects the continuity and integrity of the vessel skeleton. In addition, existing deep learning methods tend to lose a lot of detailed information during training, which affects the accuracy of segmentation. To address these issues, we propose a novel dual-decoder based Cross-patch Feature Interactive Net with Edge Refinement (CFI-Net) for end-to-end retinal vessel segmentation. In the encoder part, a joint refinement down-sampling method (JRDM) is proposed to compress feature information in the process of reducing image size, so as to reduce the loss of thin vessels and vessel edge information during the encoding process. In the decoder part, we adopt a dual-path model based on edge detection, and propose a Cross-patch Interactive Attention Mechanism (CIAM) in the main path to enhancing multi-scale spatial channel features and transferring cross-spatial information. Consequently, it improve the network's ability to segment complete and continuous vessel skeletons, reducing vessel segmentation fractures. Finally, the Adaptive Spatial Context Guide Method (ASCGM) is proposed to fuse the prediction results of the two decoder paths, which enhances segmentation details while removing part of the background noise. We evaluated our model on two retinal image datasets and one coronary angiography dataset, achieving outstanding performance in segmentation comprehensive assessment metrics such as AUC and CAL. The experimental results showed that the proposed CFI-Net has superior segmentation performance compared with other existing methods, especially for thin vessels and vessel edges. The code is available at https://github.com/kita0420/CFI-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12发布了新的文献求助10
刚刚
1秒前
2秒前
4秒前
5秒前
NexusExplorer应助rocky采纳,获得10
6秒前
Wang发布了新的文献求助10
6秒前
ugyg发布了新的文献求助20
6秒前
Bruial发布了新的文献求助10
7秒前
科研通AI5应助iceice采纳,获得10
8秒前
12完成签到,获得积分10
9秒前
9秒前
LLL发布了新的文献求助10
10秒前
浅辰完成签到 ,获得积分10
15秒前
15秒前
19秒前
莀莀完成签到 ,获得积分10
25秒前
25秒前
25秒前
科研小南完成签到 ,获得积分10
27秒前
Wang发布了新的文献求助10
32秒前
所所应助谦让溪灵采纳,获得10
32秒前
CodeCraft应助受伤的迎松采纳,获得10
33秒前
39秒前
大模型应助Wang采纳,获得10
43秒前
SiO2完成签到 ,获得积分10
43秒前
iceice发布了新的文献求助10
46秒前
47秒前
LHT完成签到,获得积分10
50秒前
科研通AI2S应助Frost采纳,获得10
52秒前
lull发布了新的文献求助10
53秒前
CodeCraft应助iceice采纳,获得10
54秒前
55秒前
MrH完成签到,获得积分10
57秒前
57秒前
刻苦珠发布了新的文献求助10
58秒前
58秒前
ding应助栗子采纳,获得10
58秒前
1分钟前
充电宝应助hqc采纳,获得10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784673
求助须知:如何正确求助?哪些是违规求助? 3329836
关于积分的说明 10243563
捐赠科研通 3045204
什么是DOI,文献DOI怎么找? 1671592
邀请新用户注册赠送积分活动 800480
科研通“疑难数据库(出版商)”最低求助积分说明 759416