G-K BertDTA: A graph representation learning and semantic embedding-based framework for drug-target affinity prediction

计算机科学 嵌入 图形 代表(政治) 人工智能 药品 药物靶点 机器学习 理论计算机科学 化学 药理学 医学 生物化学 政治 政治学 法学
作者
Xihe Qiu,Haoyu Wang,Xiaoyu Tan,Zhijun Fang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:173: 108376-108376 被引量:10
标识
DOI:10.1016/j.compbiomed.2024.108376
摘要

Developing new drugs is costly, time-consuming, and risky. Drug-target affinity (DTA), indicating the binding capability between drugs and target proteins, is a crucial indicator for drug development. Accurately predicting interaction strength between new drug-target pairs by analyzing previous experiments aids in screening potential drug molecules, repurposing them, and developing safe and effective medicines. Existing computational models for DTA prediction rely on strings or single-graph neural networks, lacking consideration of protein structure and molecular semantic information, leading to limited accuracy.Our experiments demonstrate that string-based methods may overlook protein conformations, causing a high root mean square error (RMSE) of 3.584 in affinity due to a lack of spatial context. Single graph networks also underperform on topology features, with a 6% lower confidence interval (CI) for activity classification. Absent semantic information also limits generalization across diverse compounds, resulting in 18% increment in RMSE and 5% in misclassifications within quantifications study, restricting potential drug discovery. To address these limitations, we propose G-K BertDTA, a novel framework for accurate DTA prediction incorporating protein features, molecular semantic features, and molecular structural information. In this proposed model, we represent drugs as graphs, with a GIN employed to learn the molecular topological information. For the extraction of protein structural features, we utilize a DenseNet architecture. A knowledge-based BERT semantic model is incorporated to obtain rich pre-trained semantic embeddings, thereby enhancing the feature information. We extensively evaluated our proposed approach on the publicly available benchmark datasets (i.e., KIBA and Davis), and experimental results demonstrate the promising performance of our method, which consistently outperforms previous state-of-the-art approaches. Code is available at https://github.com/AmbitYuki/G-K-BertDTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andorchid发布了新的文献求助20
2秒前
铠甲勇士完成签到,获得积分10
3秒前
城南她似海完成签到 ,获得积分10
5秒前
脑洞疼应助露亮采纳,获得10
6秒前
lavender发布了新的文献求助10
6秒前
桐桐应助bigheadear采纳,获得20
6秒前
想上985完成签到,获得积分10
6秒前
chenxilulu完成签到,获得积分10
6秒前
笨笨以莲发布了新的文献求助10
7秒前
9秒前
积极的明天完成签到,获得积分10
12秒前
bubble完成签到,获得积分10
13秒前
西瓜完成签到,获得积分10
13秒前
科目三应助Dennis采纳,获得10
14秒前
Gary发布了新的文献求助30
15秒前
16秒前
金枪鱼发布了新的文献求助10
16秒前
SciGPT应助成太采纳,获得10
16秒前
活力太兰发布了新的文献求助10
19秒前
露亮发布了新的文献求助10
20秒前
fatcat完成签到,获得积分10
21秒前
TheQ完成签到 ,获得积分10
24秒前
bigheadear给bigheadear的求助进行了留言
24秒前
虚幻煎饼完成签到 ,获得积分10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
李健应助科研通管家采纳,获得10
26秒前
Akim应助科研通管家采纳,获得10
26秒前
NexusExplorer应助科研通管家采纳,获得10
26秒前
天天向上完成签到 ,获得积分10
26秒前
黄毅完成签到,获得积分10
30秒前
30秒前
Rena完成签到,获得积分20
31秒前
朱文韬完成签到,获得积分10
32秒前
ShellyMaya完成签到 ,获得积分10
34秒前
Rena发布了新的文献求助10
35秒前
情怀应助gjp采纳,获得10
35秒前
37秒前
38秒前
结实山水完成签到 ,获得积分10
38秒前
小羊完成签到,获得积分20
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781029
求助须知:如何正确求助?哪些是违规求助? 3326508
关于积分的说明 10227468
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669541
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734