Effects of hydrogen bonds on the single-chain mechanics of chitin

甲壳素 氢键 纤维素 分子 化学 力谱学 溶剂 疏水效应 结晶学 高分子化学 化学工程 有机化学 壳聚糖 工程类
作者
Qian Lu,Xin Guo,Kai Zhang,Miao Yu
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
卷期号:24 (39): 24535-24541 被引量:9
标识
DOI:10.1039/d2cp02907c
摘要

Water is essential in the evolution of life and plays an important role in the structure and function of the basic substances of life, such as protein and DNA. However, the specific details of the role of water with respect to chitin, the most abundant biomacromolecule on Earth after cellulose, remain unclear. In this study, atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) was used to explore the effects of hydrogen bonds (H-bonds) on the single-molecule mechanics of chitin. Comparative experiments showed that a single chitin chain exhibited the same single-chain natural elasticity as cellulose in nonane, indicating that a single chitin chain can form strong intrachain H-bonds in nonane. Moreover, the single-chain elasticity of chitin obtained in dimethyl sulfoxide (DMSO) was consistent with that of cellulose, and both superposed well with the theoretical model (QM-FJC) to show the single-chain elasticity of the chitin/cellulose backbone, indicating that DMSO can eliminate almost all the intrachain H-bonds of single chitin chains. However, when water was introduced as the surrounding environment, the intrachain H-bonds of chitin were found to be weaker than those of cellulose, which is supported by the AFM mapping results. Single-molecule studies reveal that water is a unique solvent for chitin, and the nanomechanics and hydrophobicity of chitin can be influenced by an external solvent (water in this work) through regulation of the intrachain H-bonds. The present study casts new insight into the role of H-bonds and water in the structures and functions of polysaccharides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
maxthon完成签到,获得积分10
3秒前
4秒前
哈哈哈发布了新的文献求助10
5秒前
6秒前
7秒前
背后的伊发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
11秒前
空古悠浪发布了新的文献求助10
12秒前
顺利毕业完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
NatureScience应助负责的方盒采纳,获得10
14秒前
16秒前
背后的伊完成签到,获得积分10
16秒前
青衫客完成签到,获得积分10
18秒前
18秒前
18秒前
20秒前
卜靖荷完成签到,获得积分10
20秒前
21秒前
ljc2应助雪山飞龙采纳,获得10
21秒前
云游归尘发布了新的文献求助10
23秒前
苦无完成签到,获得积分10
24秒前
Arlie发布了新的文献求助10
24秒前
25秒前
Yang完成签到,获得积分20
26秒前
Li完成签到 ,获得积分10
29秒前
29秒前
闪闪蓝天完成签到,获得积分10
31秒前
34秒前
量子星尘发布了新的文献求助10
35秒前
无花果应助Lebranium采纳,获得10
35秒前
姗姗完成签到,获得积分10
35秒前
帅气的唇彩完成签到,获得积分10
37秒前
lemon发布了新的文献求助10
38秒前
chohsueh发布了新的文献求助10
39秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Does brief mindfulness intervention increase performance? An exploratory study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4265557
求助须知:如何正确求助?哪些是违规求助? 3798023
关于积分的说明 11905890
捐赠科研通 3444084
什么是DOI,文献DOI怎么找? 1889787
邀请新用户注册赠送积分活动 940719
科研通“疑难数据库(出版商)”最低求助积分说明 845038