LightFormer: A lightweight and efficient decoder for remote sensing image segmentation

作者
Sihang Chen,Lijun Yun,Ze Liu,Jianfeng Zhu,Jie Chen,Hui Wang,Yueping Nie
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2504.10834
摘要

Deep learning techniques have achieved remarkable success in the semantic segmentation of remote sensing images and in land-use change detection. Nevertheless, their real-time deployment on edge platforms remains constrained by decoder complexity. Herein, we introduce LightFormer, a lightweight decoder for time-critical tasks that involve unstructured targets, such as disaster assessment, unmanned aerial vehicle search-and-rescue, and cultural heritage monitoring. LightFormer employs a feature-fusion and refinement module built on channel processing and a learnable gating mechanism to aggregate multi-scale, multi-range information efficiently, which drastically curtails model complexity. Furthermore, we propose a spatial information selection module (SISM) that integrates long-range attention with a detail preservation branch to capture spatial dependencies across multiple scales, thereby substantially improving the recognition of unstructured targets in complex scenes. On the ISPRS Vaihingen benchmark, LightFormer attains 99.9% of GLFFNet's mIoU (83.9% vs. 84.0%) while requiring only 14.7% of its FLOPs and 15.9% of its parameters, thus achieving an excellent accuracy-efficiency trade-off. Consistent results on LoveDA, ISPRS Potsdam, RescueNet, and FloodNet further demonstrate its robustness and superior perception of unstructured objects. These findings highlight LightFormer as a practical solution for remote sensing applications where both computational economy and high-precision segmentation are imperative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助勤劳的身影采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
大模型应助内向汉堡采纳,获得10
刚刚
刚刚
flag完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
小蘑菇应助畅快曼彤采纳,获得10
2秒前
2秒前
Return发布了新的文献求助10
2秒前
2秒前
3秒前
英俊的铭应助oucedv采纳,获得10
3秒前
4秒前
富贵儿发布了新的文献求助10
4秒前
4秒前
yy发布了新的文献求助10
5秒前
zpp完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
CipherSage应助爱上人家四月采纳,获得10
6秒前
7秒前
7秒前
7秒前
轻松的囧发布了新的文献求助20
7秒前
听雨发布了新的文献求助10
7秒前
8秒前
8秒前
杨杨杨完成签到,获得积分10
8秒前
在水一方应助xujingyi采纳,获得10
8秒前
8秒前
lili完成签到 ,获得积分10
8秒前
小蘑菇应助整箱采纳,获得10
9秒前
隐形曼青应助整箱采纳,获得10
9秒前
英吉利25发布了新的文献求助10
9秒前
DE2022完成签到,获得积分10
9秒前
Lucas应助morena采纳,获得10
9秒前
Ttttt发布了新的文献求助30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649465
求助须知:如何正确求助?哪些是违规求助? 4778221
关于积分的说明 15048424
捐赠科研通 4808393
什么是DOI,文献DOI怎么找? 2571501
邀请新用户注册赠送积分活动 1527930
关于科研通互助平台的介绍 1486801