亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring the potential of Siamese network for RGBT object tracking

计算机科学 BitTorrent跟踪器 人工智能 稳健性(进化) 视频跟踪 计算机视觉 保险丝(电气) 利用 卷积神经网络 深度学习 特征(语言学) 模式识别(心理学) 眼动 对象(语法) 电气工程 化学 哲学 工程类 基因 生物化学 语言学 计算机安全
作者
Feng Liang-liang,Kechen Song,Junyi Wang,Yunhui Yan
出处
期刊:Journal of Visual Communication and Image Representation [Elsevier]
卷期号:95: 103882-103882 被引量:15
标识
DOI:10.1016/j.jvcir.2023.103882
摘要

Siamese tracking is one of the most promising object tracking methods today due to its balance of performance and speed. However, it still performs poorly when faced with some challenges such as low light or extreme weather. This is caused by the inherent limitations of visible images, and a common way to cope with it is to introduce infrared data as an aid to improve the robustness of tracking. However, most of the existing RGBT trackers are variants of MDNet (Hyeonseob Nam and Bohyung Han, Learning multi-domain convolutional neural networks for visual tracking, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 4293–4302.), which have significant limitations in terms of operational efficiency. On the contrary, the potential of Siamese tracking in the field of RGBT tracking has not been effectively exploited due to the reliance on large-scale training data. To solve this dilemma, in this paper, we propose an end-to-end Siamese RGBT tracking framework that is based on cross-modal feature enhancement and self-attention (SiamFEA). We draw on the idea of migration learning and employ local fine-tuning to reduce the dependence on large-scale RGBT data and verify the feasibility of this approach, and then we propose a reliable fusion approach to efficiently fuse the features of different modalities. Specifically, we first propose a cross-modal feature enhancement module to exploit the complementary properties of dual-modality, followed by capturing non-local attention in channel and spatial dimensions for adaptive weighted fusion, respectively. Our network was trained end-to-end on the LasHeR (Chenglong Li, Wanlin Xue, Yaqing Jia, Zhichen Qu, Bin Luo, Jin Tang, LasHeR: A Large-scale High-diversity Benchmark for RGBT Tracking, CoRR abs/2104.13202, 2021) training set and reached new SOTAs on GTOT (C. Li, H. Cheng, S. Hu, X. Liu, J. Tang, L. Lin, Learning collaborative sparse representation for grayscale-thermal tracking, IEEE Trans. Image Process, 25 (12) (2016) 5743–5756.), RGBT234 (C. Li, X. Liang, Y. Lu, N. Zhao, and J. Tang, "Rgb-t object tracking: Benchmark and baseline," Pattern Recognition, vol. 96, p. 106977, 2019.), and LasHeR (Chenglong Li, Wanlin Xue, Yaqing Jia, Zhichen Qu, Bin Luo, Jin Tang, LasHeR: A Large-scale High-diversity Benchmark for RGBT Tracking, CoRR abs/2104.13202, 2021) while running in real-time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
4秒前
8秒前
Akim应助温暖水云采纳,获得10
9秒前
aprise完成签到 ,获得积分10
9秒前
时间尘埃发布了新的文献求助10
10秒前
YifanWang完成签到,获得积分0
12秒前
仰望星空发布了新的文献求助10
15秒前
17秒前
YH完成签到,获得积分10
18秒前
徐继军发布了新的文献求助10
19秒前
仰望星空完成签到,获得积分10
23秒前
23秒前
GingerF完成签到,获得积分0
24秒前
轻松冰淇淋完成签到,获得积分10
33秒前
34秒前
jkj发布了新的文献求助10
35秒前
42秒前
踏实的傲之完成签到,获得积分20
42秒前
44秒前
温暖水云发布了新的文献求助10
47秒前
852应助壹玖一陆采纳,获得10
53秒前
wanna发布了新的文献求助10
55秒前
55秒前
完美谷秋完成签到 ,获得积分10
56秒前
突突leolo发布了新的文献求助10
59秒前
HOXXXiii完成签到,获得积分10
1分钟前
1分钟前
隐形曼青应助时间尘埃采纳,获得10
1分钟前
1分钟前
l900发布了新的文献求助20
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
可可西里发布了新的文献求助10
1分钟前
1分钟前
zwenng完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493810
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434715
捐赠科研通 4524218
什么是DOI,文献DOI怎么找? 2478734
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490