PeakDetective: A Semisupervised Deep Learning-Based Approach for Peak Curation in Untargeted Metabolomics

人工智能 分类器(UML) 瓶颈 自编码 代谢组学 模式识别(心理学) 化学 深度学习 机器学习 分析物 软件 计算机科学 色谱法 嵌入式系统 程序设计语言
作者
Ethan Stancliffe,Gary J. Patti
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (25): 9397-9403 被引量:10
标识
DOI:10.1021/acs.analchem.3c00764
摘要

Peak-detection algorithms currently used to process untargeted metabolomics data were designed to maximize sensitivity at the sacrifice of selectively. Peak lists returned by conventional software tools therefore contain a high density of artifacts that do not represent real chemical analytes, which, in turn, hinder downstream analyses. Although some innovative approaches to remove artifacts have recently been introduced, they involve extensive user intervention due to the diversity of peak shapes present within and across metabolomics data sets. To address this bottleneck in metabolomics data processing, we developed a semisupervised deep learning-based approach, PeakDetective, for classification of detected peaks as artifacts or true peaks. Our approach utilizes two techniques for artifact removal. First, an unsupervised autoencoder is used to extract a low-dimensional, latent representation of each peak. Second, a classifier is trained with active learning to discriminate between artifacts and true peaks. Through active learning, the classifier is trained with less than 100 user-labeled peaks in a matter of minutes. Given the speed of its training, PeakDetective can be rapidly tailored to specific LC/MS methods and sample types to maximize performance on each type of data set. In addition to curation, the trained models can also be utilized for peak detection to immediately detect peaks with both high sensitivity and selectivity. We validated PeakDetective on five diverse LC/MS data sets, where PeakDetective showed greater accuracy compared to current approaches. When applied to a SARS-CoV-2 data set, PeakDetective enabled more statistically significant metabolites to be detected. PeakDetective is open source and available as a Python package at https://github.com/pattilab/PeakDetective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
瘦瘦鸵鸟完成签到,获得积分20
3秒前
3秒前
old幽露露发布了新的文献求助10
4秒前
小亮完成签到,获得积分10
4秒前
5秒前
5秒前
瘦瘦鸵鸟发布了新的文献求助10
5秒前
6秒前
wanci应助小龙采纳,获得10
7秒前
科研小巴发布了新的文献求助10
7秒前
无花果应助jiahongcao采纳,获得10
9秒前
yuyu发布了新的文献求助10
9秒前
fuyu98发布了新的文献求助10
10秒前
甜橘发布了新的文献求助10
10秒前
优美紫槐应助典雅的湘采纳,获得10
11秒前
Hello应助TZMY采纳,获得10
12秒前
13秒前
安青梅完成签到 ,获得积分10
14秒前
15秒前
16秒前
18秒前
18秒前
19秒前
enenen发布了新的文献求助20
21秒前
斯文败类应助yuyu采纳,获得10
21秒前
传奇3应助maruko采纳,获得10
21秒前
jiahongcao发布了新的文献求助10
21秒前
桐桐应助甜橘采纳,获得10
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
CodeCraft应助ohh采纳,获得10
24秒前
活泼巧曼发布了新的文献求助10
24秒前
25秒前
一壶古酒应助美丽的周采纳,获得80
26秒前
NexusExplorer应助子勋采纳,获得10
28秒前
kingwill发布了新的文献求助30
28秒前
onestep完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599307
求助须知:如何正确求助?哪些是违规求助? 4684893
关于积分的说明 14836988
捐赠科研通 4667699
什么是DOI,文献DOI怎么找? 2537887
邀请新用户注册赠送积分活动 1505378
关于科研通互助平台的介绍 1470783