亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SAGCN: Using graph convolutional network with subgraph-aware for circRNA-drug sensitivity identification

计算机科学 灵敏度(控制系统) 图形 鉴定(生物学) 理论计算机科学 生物 工程类 电子工程 植物
作者
Weicheng Sun,Chengjuan Ren,Jinsheng Xu,Ping Zhang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:3
标识
DOI:10.1109/tcbb.2024.3415058
摘要

Circular RNAs (circRNAs) play a significant role in cancer development and therapy resistance. There is substantial evidence indicating that the expression of circRNAs affects the sensitivity of cells to drugs. Identifying circRNAs-drug sensitivity association (CDA) is helpful for disease treatment and drug discovery. However, the identification of CDA through conventional biological experiments is both time-consuming and costly. Therefore, it is urgent to develop computational methods to predict CDA. In this study, we propose a new computational method, the subgraph-aware graph convolutional network (SAGCN), for predicting CDA. SAGCN first construct a heterogeneous network composed of circRNA similarity network, drug similarity network, and circRNA-drug bipartite network. Then, a subgraph extractor is proposed to learn the latent subgraph structure of the heterogeneous network using a graph convolutional network. The extractor can capture 1-hop and 2-hop information and then a fusing attention mechanism is designed to integrate them adaptively. Simultaneously, a novel subgraph-aware attention mechanism is proposed to detect intrinsic subgraph structure. The final node feature representation is obtained to make the CDA prediction. Experimental results demonstrate that SAGCN obtained an average AUC of 0.9120 and AUPR of 0.8693, exceeding the performance of the most advanced models under 10-fold cross-validation. Case studies have demonstrated the potential of SAGCN in identifying associations between circRNA and drug sensitivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
24秒前
薛雨佳发布了新的文献求助10
30秒前
贰玖发布了新的文献求助10
34秒前
43秒前
一个爱打乒乓球的彪完成签到 ,获得积分10
44秒前
贰玖完成签到,获得积分10
46秒前
辰溪发布了新的文献求助10
46秒前
46秒前
嘻嘻哈哈应助科研通管家采纳,获得10
54秒前
充电宝应助科研通管家采纳,获得30
54秒前
浮游应助科研通管家采纳,获得10
54秒前
嘻嘻哈哈应助科研通管家采纳,获得10
54秒前
Ava应助辰溪采纳,获得10
56秒前
1分钟前
1分钟前
ZYP完成签到,获得积分10
1分钟前
1分钟前
乐乐应助迅速的岩采纳,获得10
1分钟前
lcxw1224发布了新的文献求助10
1分钟前
迅速的岩完成签到,获得积分10
1分钟前
1分钟前
1分钟前
迅速的岩发布了新的文献求助10
1分钟前
万人如海一身藏完成签到,获得积分20
1分钟前
1分钟前
souther完成签到,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
阿瓜师傅发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482348
求助须知:如何正确求助?哪些是违规求助? 4583202
关于积分的说明 14388962
捐赠科研通 4512258
什么是DOI,文献DOI怎么找? 2472792
邀请新用户注册赠送积分活动 1459036
关于科研通互助平台的介绍 1432501