Generative Students: Using LLM-Simulated Student Profiles to Support Question Item Evaluation

计算机科学 生成语法 人工智能 自然语言处理 支持向量机 数学教育 多媒体 心理学
作者
Xinyi Lu,Xu Wang
标识
DOI:10.1145/3657604.3662031
摘要

Evaluating the quality of automatically generated question items has been a long standing challenge. In this paper, we leverage LLMs to simulate student profiles and generate responses to multiple-choice questions (MCQs). The generative students' responses to MCQs can further support question item evaluation. We propose Generative Students, a prompt architecture designed based on the KLI framework. A generative student profile is a function of the list of knowledge components the student has mastered, has confusion about or has no evidence of knowledge of. We instantiate the Generative Students concept on the subject domain of heuristic evaluation. We created 45 generative students using GPT-4 and had them respond to 20 MCQs. We found that the generative students produced logical and believable responses that were aligned with their profiles. We then compared the generative students' responses to real students' responses on the same set of MCQs and found a high correlation. Moreover, there was considerable overlap in the difficult questions identified by generative students and real students. A subsequent case study demonstrated that an instructor could improve question quality based on the signals provided by Generative Students.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wrong完成签到,获得积分10
4秒前
科研通AI5应助辛丽丽采纳,获得10
5秒前
5秒前
冷静丸子完成签到 ,获得积分10
6秒前
马路完成签到,获得积分10
6秒前
7秒前
9秒前
小浣熊完成签到,获得积分10
10秒前
11秒前
马路发布了新的文献求助10
11秒前
13秒前
可靠的青发布了新的文献求助10
13秒前
16秒前
16秒前
搜集达人应助001采纳,获得10
16秒前
量子星尘发布了新的文献求助30
17秒前
18秒前
咩咩完成签到,获得积分20
18秒前
19秒前
19秒前
20秒前
21秒前
21秒前
龙龖龘完成签到,获得积分10
21秒前
zkk完成签到,获得积分10
22秒前
中国大陆发布了新的文献求助10
22秒前
晴天发布了新的文献求助10
22秒前
23秒前
25秒前
28秒前
桐桐应助阔达的冷风采纳,获得10
28秒前
辛丽丽发布了新的文献求助10
30秒前
充电宝应助晴天采纳,获得10
30秒前
小菜鸟努力学完成签到,获得积分10
31秒前
31秒前
bkagyin应助中国大陆采纳,获得10
31秒前
易玟完成签到,获得积分20
32秒前
小猪找库里完成签到,获得积分10
32秒前
hgc完成签到,获得积分10
32秒前
高大头发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5096400
求助须知:如何正确求助?哪些是违规求助? 4309112
关于积分的说明 13426221
捐赠科研通 4136208
什么是DOI,文献DOI怎么找? 2265945
邀请新用户注册赠送积分活动 1269234
关于科研通互助平台的介绍 1205422