CapsEnhancer: An Effective Computational Framework for Identifying Enhancers Based on Chaos Game Representation and Capsule Network

代表(政治) 计算机科学 混沌(操作系统) 胶囊 增强子 人工智能 理论计算机科学 计算生物学 生物 遗传学 计算机安全 基因表达 植物 政治 政治学 基因 法学
作者
Lantian Yao,Peilin Xie,Jiahui Guan,Chia‐Ru Chung,Yixian Huang,Yuxuan Pang,Huacong Wu,Ying‐Chih Chiang,Tzong-Yi Lee
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (14): 5725-5736
标识
DOI:10.1021/acs.jcim.4c00546
摘要

Enhancers are a class of noncoding DNA, serving as crucial regulatory elements in governing gene expression by binding to transcription factors. The identification of enhancers holds paramount importance in the field of biology. However, traditional experimental methods for enhancer identification demand substantial human and material resources. Consequently, there is a growing interest in employing computational methods for enhancer prediction. In this study, we propose a two-stage framework based on deep learning, termed CapsEnhancer, for the identification of enhancers and their strengths. CapsEnhancer utilizes chaos game representation to encode DNA sequences into unique images and employs a capsule network to extract local and global features from sequence "images". Experimental results demonstrate that CapsEnhancer achieves state-of-the-art performance in both stages. In the first and second stages, the accuracy surpasses the previous best methods by 8 and 3.5%, reaching accuracies of 94.5 and 95%, respectively. Notably, this study represents the pioneering application of computer vision methods to enhancer identification tasks. Our work not only contributes novel insights to enhancer identification but also provides a fresh perspective for other biological sequence analysis tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助William采纳,获得10
2秒前
2秒前
qls完成签到,获得积分10
4秒前
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
4秒前
NN应助科研通管家采纳,获得10
4秒前
4秒前
LIANG完成签到,获得积分10
5秒前
栗子完成签到 ,获得积分10
5秒前
6秒前
叶世玉发布了新的文献求助10
7秒前
ZhiyunXu2012完成签到 ,获得积分10
7秒前
明理的滑板应助XM采纳,获得10
7秒前
8秒前
yan完成签到,获得积分10
9秒前
kkkkr完成签到 ,获得积分10
9秒前
13秒前
lime发布了新的文献求助10
13秒前
13秒前
科研通AI5应助Russula_Chu采纳,获得30
14秒前
不留行发布了新的文献求助10
16秒前
Anesthesialy完成签到,获得积分10
17秒前
17秒前
冰魂应助正在通话中采纳,获得20
18秒前
20秒前
Smiling完成签到 ,获得积分10
20秒前
天天快乐应助时尚又蓝采纳,获得10
22秒前
乐乐完成签到,获得积分10
23秒前
夏天发布了新的文献求助10
23秒前
zele女士发布了新的文献求助10
24秒前
2874发布了新的文献求助10
25秒前
26秒前
William发布了新的文献求助10
26秒前
雾蓝发布了新的文献求助10
30秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Mortality and adverse events of special interest with intravenous belimumab for adults with active, autoantibody-positive systemic lupus erythematosus (BASE): a multicentre, double-blind, randomised, placebo-controlled, phase 4 trial 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838391
求助须知:如何正确求助?哪些是违规求助? 3380670
关于积分的说明 10515477
捐赠科研通 3100271
什么是DOI,文献DOI怎么找? 1707439
邀请新用户注册赠送积分活动 821718
科研通“疑难数据库(出版商)”最低求助积分说明 772907