机制(生物学)
效应器
免疫系统
细胞
免疫学
医学
生物
遗传学
哲学
认识论
作者
Kai Rejeski,Michael D. Jain,Nirali N. Shah,Miguel‐Angel Perales,Marion Subklewe
标识
DOI:10.1016/s2352-3026(24)00077-2
摘要
Genetically engineered chimeric antigen receptor (CAR) T cells have become an effective treatment option for several advanced B-cell malignancies. Haematological side-effects, classified in 2023 as immune effector cell-associated haematotoxicity (ICAHT), are very common and can predispose for clinically relevant infections. As haematopoietic reconstitution after CAR T-cell therapy differs from chemotherapy-associated myelosuppression, a novel classification system for early and late ICAHT has been introduced. Furthermore, a risk stratification score named CAR-HEMATOTOX has been developed to identify candidates at high risk of ICAHT, thereby enabling risk-based interventional strategies. Therapeutically, growth factor support with granulocyte colony-stimulating factor (G-CSF) is the mainstay of treatment, with haematopoietic stem cell (HSC) boosts available for patients who are refractory to G-CSF (if available). Although the underlying pathophysiology remains poorly understood, translational studies from the past 3 years suggest that CAR T-cell-induced inflammation and baseline haematopoietic function are key contributors to prolonged cytopenia. In this Review, we provide an overview of the spectrum of haematological toxicities after CAR T-cell therapy and offer perspectives on future translational and clinical developments.
科研通智能强力驱动
Strongly Powered by AbleSci AI