PCSformer: Pair-wise Cross-scale Sub-prototypes mining with CNN-transformers for weakly supervised semantic segmentation

计算机科学 分割 判别式 可扩展性 卷积神经网络 人工智能 变压器 帕斯卡(单位) 模式识别(心理学) 机器学习 量子力学 数据库 物理 电压 程序设计语言
作者
Chunmeng Liu,Yao Shen,Qingguo Xiao,Guangyao Li
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:593: 127834-127834
标识
DOI:10.1016/j.neucom.2024.127834
摘要

Generating initial seeds is an important step in weakly supervised semantic segmentation (WSSS). Our approach concentrates on generating and refining initial seeds. The convolutional neural networks (CNNs)–based initial seeds focus only on the most discriminative regions and lack global information about the target. The Vision Transformer (ViT)–based approach can capture long-range feature dependencies due to the unique advantage of the self-attention mechanism. Still, we find that it suffers from distractor object leakage and background leakage problems. Based on these observations, we propose PCSformer, which improves the model's ability to extract features through a Pair-wise Cross-scale (PC) strategy and solves the problem of distractor object leakage by further extracting potential target features through Sub-Prototypes (SP) mining. In addition, the proposed Conflict Self-Elimination (CSE) module further alleviates the background leakage problem. We validate our approach on the widely adopted Pascal VOC 2012 and MS COCO 2014, and extensive experiments demonstrate our superior performance. Furthermore, our method proves to be competitive for WSSS in medical images and challenging scenarios involving deformable and cluttered scenes. Additionally, we extend the PCSformer to weakly supervised object localization tasks, further highlighting its scalability and versatility. The code is available at https://github.com/ChunmengLiu1/PCSformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
重要芝完成签到 ,获得积分10
刚刚
刚刚
维生素pp发布了新的文献求助10
1秒前
科研通AI5应助llllffff采纳,获得10
1秒前
1秒前
郜先生发布了新的文献求助30
2秒前
昭玥应助暖冬的向日葵采纳,获得10
2秒前
accept应助欣欣采纳,获得10
3秒前
科研肥料发布了新的文献求助10
3秒前
ZhouYW应助罗浩采纳,获得10
4秒前
ZhouYW应助YP采纳,获得10
4秒前
桐桐应助哈鯨采纳,获得500
4秒前
MJH完成签到,获得积分10
4秒前
彭于晏应助花生仁采纳,获得10
4秒前
5秒前
桐桐应助乘风破浪采纳,获得10
6秒前
liuyuanyuan发布了新的文献求助10
6秒前
jnn关注了科研通微信公众号
8秒前
思源应助勤劳的飞莲采纳,获得10
8秒前
9秒前
脑洞疼应助lu采纳,获得10
9秒前
kkkkkw完成签到,获得积分10
9秒前
香蕉觅云应助夏辞采纳,获得10
9秒前
Lucas应助野性的晓蕾采纳,获得10
9秒前
ZXH完成签到,获得积分10
10秒前
panda完成签到 ,获得积分10
10秒前
10秒前
10秒前
10秒前
淡定小蜜蜂关注了科研通微信公众号
11秒前
wwww发布了新的文献求助10
11秒前
852应助小鹿采纳,获得10
12秒前
12秒前
凉小远完成签到,获得积分10
13秒前
13秒前
852应助YCW采纳,获得10
14秒前
14秒前
酷波er应助嘻嘻哈哈小鱼采纳,获得10
14秒前
15秒前
英姑应助kaola采纳,获得10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790576
求助须知:如何正确求助?哪些是违规求助? 3335344
关于积分的说明 10274460
捐赠科研通 3051907
什么是DOI,文献DOI怎么找? 1674860
邀请新用户注册赠送积分活动 802890
科研通“疑难数据库(出版商)”最低求助积分说明 760964