Intrinsically stretchable organic photovoltaics by redistributing strain to PEDOT:PSS with enhanced stretchability and interfacial adhesion

佩多:嘘 粘附 拉伤 光伏 材料科学 有机太阳能电池 纳米技术 聚合物 复合材料 光伏系统 图层(电子) 生物 生态学 解剖
作者
Jiachen Wang,Yuto Ochiai,Niannian Wu,Kiyohiro Adachi,Daishi Inoue,Daisuke Hashizume,Desheng Kong,Naoji Matsuhisa,Tomoyuki Yokota,Qiang Wu,Wei Ma,Lulu Sun,Sixing Xiong,Baocai Du,Wenqing Wang,Chih‐Jen Shih,Keisuke Tajima,Takuzo Aida,Kenjiro Fukuda,Takao Someya
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:15 (1) 被引量:18
标识
DOI:10.1038/s41467-024-49352-4
摘要

Abstract Intrinsically stretchable organic photovoltaics have emerged as a prominent candidate for the next-generation wearable power generators regarding their structural design flexibility, omnidirectional stretchability, and in-plane deformability. However, formulating strategies to fabricate intrinsically stretchable organic photovoltaics that exhibit mechanical robustness under both repetitive strain cycles and high tensile strains remains challenging. Herein, we demonstrate high-performance intrinsically stretchable organic photovoltaics with an initial power conversion efficiency of 14.2%, exceptional stretchability (80% of the initial power conversion efficiency maintained at 52% tensile strain), and cyclic mechanical durability (95% of the initial power conversion efficiency retained after 100 strain cycles at 10%). The stretchability is primarily realised by delocalising and redistributing the strain in the active layer to a highly stretchable PEDOT:PSS electrode developed with a straightforward incorporation of ION E, which simultaneously enhances the stretchability of PEDOT:PSS itself and meanwhile reinforces the interfacial adhesion with the polyurethane substrate. Both enhancements are pivotal factors ensuring the excellent mechanical durability of the PEDOT:PSS electrode, which further effectively delays the crack initiation and propagation in the top active layer, and enables the limited performance degradation under high tensile strains and repetitive strain cycles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梅子酸糖发布了新的文献求助10
1秒前
企鹅发布了新的文献求助10
1秒前
SciGPT应助HeyHsc采纳,获得10
1秒前
hannahwu完成签到,获得积分10
2秒前
水向东流发布了新的文献求助10
2秒前
3秒前
3秒前
Yana1311完成签到,获得积分10
3秒前
ding应助和谐白羊采纳,获得10
5秒前
5秒前
Jasper应助一点通采纳,获得10
6秒前
7秒前
WANG发布了新的文献求助10
7秒前
7秒前
zzzzzz113完成签到,获得积分10
7秒前
7秒前
Nacies完成签到,获得积分10
8秒前
8秒前
1234完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
sjj完成签到,获得积分10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
大个应助CC采纳,获得30
11秒前
11秒前
彭于晏应助科研通管家采纳,获得20
11秒前
HEROER发布了新的文献求助10
11秒前
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
怡然铃铛应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
12秒前
怡然铃铛应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813863
求助须知:如何正确求助?哪些是违规求助? 3358242
关于积分的说明 10393295
捐赠科研通 3075577
什么是DOI,文献DOI怎么找? 1689423
邀请新用户注册赠送积分活动 812845
科研通“疑难数据库(出版商)”最低求助积分说明 767387