First-principles-based machine learning interatomic potential for molecular dynamics simulations of 2D lateral MoS2/WS2 heterostructures

分子动力学 原子间势 异质结 动力学(音乐) 计算机科学 材料科学 统计物理学 物理 化学 计算化学 光电子学 声学
作者
Xiangjun Liu,Baolong Wang,KaiDa Jia,Wang Quan-jie,Di Wang,Yucheng Xiong
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:135 (20) 被引量:6
标识
DOI:10.1063/5.0201527
摘要

Understanding the mechanical and thermodynamic properties of transition-metal dichalcogenides (TMDs) and their heterostructures is pivotal for advancing the development of flexible semiconductor devices, and molecular dynamics (MD) simulation is widely applied to study these properties. However, current uncertainties persist regarding the efficacy of empirical potentials in MD simulations to accurately describe the intricate performance of complex interfaces within heterostructures. This study addresses these challenges by developing an interatomic potential based on deep neural networks and first-principles calculations. Specifically focusing on MoS2/WS2 heterostructures, our approach aims to predict Young's modulus and thermal conductivities. The potential's effectiveness is demonstrated through the validation of structural features, mechanical properties, and thermodynamic characteristics, revealing close alignment with values derived from first-principles calculations. A noteworthy finding is the substantial influence of the load direction on Young's modulus of heterostructures. Furthermore, our results highlight that the interfacial thermal conductance of the MoS2/WS2 heterostructures is considerably larger than that of graphene-based interfaces. The potential developed in this work facilitates large-scale material simulations, bridging the gap with first-principles calculations. Notably, it outperforms empirical potentials under interface conditions, establishing its significant competitiveness in simulation computations. Our approach not only contributes to a deeper understanding of TMDs and heterostructures but also presents a robust tool for the simulation of their mechanical and thermal behaviors, paving the way for advancements in flexible semiconductor device manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冯侠完成签到,获得积分10
1秒前
神奇的柜子完成签到,获得积分10
3秒前
4秒前
小张完成签到 ,获得积分10
5秒前
5秒前
余任游完成签到,获得积分10
6秒前
Ava应助朴实流沙采纳,获得10
9秒前
成就夜柳发布了新的文献求助10
10秒前
10秒前
JC发布了新的文献求助10
12秒前
852应助培a采纳,获得10
13秒前
洋子完成签到,获得积分10
13秒前
波比完成签到,获得积分10
13秒前
失眠的蓝完成签到,获得积分10
14秒前
15秒前
15秒前
BioPolaris完成签到,获得积分10
15秒前
俊秀的丹翠完成签到,获得积分10
15秒前
可爱的函函应助wu采纳,获得10
15秒前
元宝完成签到,获得积分10
16秒前
天天快乐应助成就夜柳采纳,获得10
17秒前
17秒前
cherish完成签到,获得积分10
18秒前
19秒前
44发布了新的文献求助10
19秒前
21秒前
曦cherish完成签到,获得积分10
21秒前
Niu发布了新的文献求助30
21秒前
hoyden完成签到,获得积分10
21秒前
自觉的静竹完成签到,获得积分10
22秒前
25秒前
26秒前
SciGPT应助愉快奇异果采纳,获得10
26秒前
丘比特应助啦啦啦采纳,获得10
26秒前
26秒前
hubert发布了新的文献求助10
27秒前
27秒前
朴实流沙发布了新的文献求助10
29秒前
洋子发布了新的文献求助10
30秒前
yuaner发布了新的文献求助10
30秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805315
求助须知:如何正确求助?哪些是违规求助? 3350274
关于积分的说明 10348210
捐赠科研通 3066165
什么是DOI,文献DOI怎么找? 1683589
邀请新用户注册赠送积分活动 809064
科研通“疑难数据库(出版商)”最低求助积分说明 765214