清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Integrated information decomposition unveils major structural traits of in silico and in vitro neuronal networks

传递熵 计算机科学 信息传递 网络拓扑 拓扑(电路) 冗余(工程) 信息流 熵(时间箭头) 信息论 交互信息 网络动力学 理论计算机科学 分布式计算 人工智能 数学 最大熵原理 计算机网络 物理 电信 语言学 哲学 统计 离散数学 组合数学 量子力学 操作系统
作者
Gustavo Menesse,Akke Mats Houben,Jordi Soriano,Joaquı́n J. Torres
出处
期刊:Chaos [American Institute of Physics]
卷期号:34 (5) 被引量:1
标识
DOI:10.1063/5.0201454
摘要

The properties of complex networked systems arise from the interplay between the dynamics of their elements and the underlying topology. Thus, to understand their behavior, it is crucial to convene as much information as possible about their topological organization. However, in large systems, such as neuronal networks, the reconstruction of such topology is usually carried out from the information encoded in the dynamics on the network, such as spike train time series, and by measuring the transfer entropy between system elements. The topological information recovered by these methods does not necessarily capture the connectivity layout, but rather the causal flow of information between elements. New theoretical frameworks, such as Integrated Information Decomposition (Φ-ID), allow one to explore the modes in which information can flow between parts of a system, opening a rich landscape of interactions between network topology, dynamics, and information. Here, we apply Φ-ID on in silico and in vitro data to decompose the usual transfer entropy measure into different modes of information transfer, namely, synergistic, redundant, or unique. We demonstrate that the unique information transfer is the most relevant measure to uncover structural topological details from network activity data, while redundant information only introduces residual information for this application. Although the retrieved network connectivity is still functional, it captures more details of the underlying structural topology by avoiding to take into account emergent high-order interactions and information redundancy between elements, which are important for the functional behavior, but mask the detection of direct simple interactions between elements constituted by the structural network topology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fiona完成签到 ,获得积分10
刚刚
4秒前
Microbiota发布了新的文献求助10
10秒前
10秒前
19秒前
乐乐应助CC采纳,获得10
29秒前
bo完成签到 ,获得积分10
33秒前
善学以致用应助文天采纳,获得10
40秒前
阿德利企鹅完成签到 ,获得积分10
46秒前
酷波er应助日暮采纳,获得10
50秒前
huhu完成签到,获得积分10
51秒前
曾经不言完成签到 ,获得积分10
56秒前
Connie完成签到,获得积分10
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得20
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
日暮完成签到,获得积分10
1分钟前
1分钟前
日暮发布了新的文献求助10
1分钟前
1分钟前
CC发布了新的文献求助10
1分钟前
1分钟前
李健的小迷弟应助Microbiota采纳,获得10
1分钟前
文天发布了新的文献求助10
1分钟前
动漫大师发布了新的文献求助50
1分钟前
不想洗碗完成签到 ,获得积分10
1分钟前
莎莎完成签到 ,获得积分10
1分钟前
malistm完成签到,获得积分10
2分钟前
榴下晨光完成签到 ,获得积分10
2分钟前
文天完成签到,获得积分10
2分钟前
新奇完成签到 ,获得积分10
2分钟前
SCI完成签到 ,获得积分10
2分钟前
guoxihan完成签到,获得积分10
2分钟前
2分钟前
zhangyan00004发布了新的文献求助10
2分钟前
bee完成签到 ,获得积分10
2分钟前
aniu完成签到,获得积分10
3分钟前
lod完成签到,获得积分10
3分钟前
nini完成签到,获得积分10
3分钟前
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340665
关于积分的说明 10300948
捐赠科研通 3057168
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626